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Abstract— Online traffic speed data of urban road networks
serve as the foundation of modern intelligent transportation
systems. Much research has been conducted on developing
methods, mostly model-based or machine learning ones, to
estimate the data with GPS record for one, few adjacent
roads, or the entire vehicular transportation network. While
the machine learning methods generally yield satisfactory
estimation accuracy, their accomplishments are established on
a plethora of historical GPS records which may not be readily
available for many urban transportation systems. In this paper,
we investigate a transfer learning approach to provide speed
data estimations with few data. We ground this work on a
graph convolutional generative autoencoder that can generate
the estimations for an entire transportation network in one go,
and modify its internal computation graph to reduce the size of
network topology-dependent model parameters. Subsequently,
pre-trained models from road networks with massive historical
data can be re-used in other networks with few data, which
are only employed to adjust a small number of parameters.
To assess the effectiveness of the proposed approach, compre-
hensive case studies are conducted, in which outstanding speed
estimations can be obtained with significantly shorter training
time.

I. INTRODUCTION

IMELY and accurate estimation of the traffic speed

in urban road networks is among the most important
features of the intelligent transportation system (ITS) in
modern smart city developments [1]. It serves as the founda-
tion of higher-level ITS applications, since such data helps
governments, companies, and research institutes to better
understand human behaviors, plan transportation system con-
structions, and operate city transits [2]. For instance, real-
time route planning of contemporary urban city services
heavily rely on the real-time traffic speed to develop optimal
routes, which at the same time also contributes to the social
welfare, e.g., less pollutant emission and traffic congestion
(31, [4].

Motivated by the importance of real-time traffic speed esti-
mation to urban road networks, much effort has been devoted
to developing solutions for providing such information [5]. In
this context, industry and academia take different approaches.
The former — Google and Uber for example — makes use of
its massive users and customers to gather real-time vehicular
GPS records containing the position and speed of crowd-
sourcing vehicles [6]. The record data can be easily fused
to construct a traffic speed map, which is later employed to
provide real-time routing services. However, such approaches
are established on the availability of huge crowd-sourcing
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vehicle information, which is not always possible for other
companies or services.

On the other hand, recent research effort focused on
employing either traffic-model-based or black-box statistical
methods to provide speed estimation with relatively scarce
speed measurements, e.g., [7]-[10]. Either class of meth-
ods has its own advantages over the other. While model-
based approaches can be better adopted in what-if reasoning
due to their transparency and interpretability, black-box
approaches are generally more robust to data noise and
perturbations. Recent approaches in either class demonstrated
speed estimations with satisfactory accuracy and timeliness,
even compared with industrial crowd-sourcing speed data.
Nonetheless, these approaches concentrate on only one or
few adjacent roads at one time. In the context of modern
large urban transportation networks, such approaches become
highly computationally inefficient, and the transportation
network topology information cannot be utilized, which leads
to potential performance loss. To overcome these drawbacks,
a recent work proposed a graph convolutional generative
autoencoder (GCGA) model based on recent advance of deep
learning techniques for real-time traffic speed estimation
[11]. By adopting graph convolution operations, the approach
is capable of developing urban road speed data considering
the overall traffic condition according to the road topology.
In addition, its generative adversarial design empowers the
model to generate the speed estimation of an entire trans-
portation network in one go.

However, there exists a significant problem to such black-
box models. Most existing models are developed based on
machine learning techniques, which require a large volume
of historical traffic data to adjust model parameters. Such
data may be available to a few large cities across the world,
but can be uncommon for the rest due to infrastructure or
information and communication technology limits. How to
construct and fine-tune black-box models for such cities with
few-shot data, i.e., data in a small volume, is a critical prob-
lem that hinders the deployment of these speed estimation
approaches.

To solve this problem, in this work we propose a transfer
learning-driven online traffic speed estimation approach for
urban road networks, based on the GCGA deep learning
model. We particularly consider the historical traffic data
characteristics of different urban transportation and identify
the topology-agnostic model parameters in GCGA. Differ-
ent from existing work in which the speed estimators are
trained with data from the same road networks, the proposed
approach first pre-trains the model with data from the large



cities with sufficient historical records. Then selective pa-
rameters in the model is further fine-tuned using the few-
shot data from the target city. As far as we are concerned,
this is the pioneer work on transferrable online traffic speed
estimation for entire urban road networks.

The rest of this paper is organized as follows. In Section
II, we present the mathematical formulation of the traffic
speed estimation problem. In Section III, the original design
of GCGA is introduced, and how we make the model utilize
the transferrable latent information from other road networks
is elaborated. Section IV presents multiple case studies for
performance assessment, and this paper is concluded in
Section V.

II. TRAFFIC SPEED ESTIMATION FOR URBAN ROAD
NETWORKS

We model the investigated road network as a direct graph
G(N,E), in which NV is the set of road intersections in
the network, and & is the set of roads connecting the
intersections. Given the topology of an arbitrary transporta-
tion system, the graph can be easily constructed by first
identifying the locations of intersections, and then connecting
them when there is a road. For each road e € £, we use fr(e)
and to(e) to represent its starting and ending intersections,
respectively.

Let 7 = {---,—2,—1,0} be the discrete time horizon
of the past until the current time constituted by consecutive
time instances, in which ¢ = O refers to the current one. For
each road e € £, we use v.; to denote its average traffic
flow speed at time ¢. Besides this time-variant data of roads,
they also have a collection of time-invariant properties, e.g.,
driving speed limits and number of nearby point of interests,
denoted by P, for e € £. These properties greatly enhanced
the information richness of the urban road network.

In traffic speed estimation, the most prominent objective
is to obtain the speed map of urban road networks V, =
{veo|Ve € E}. While the speed values can be directly
obtained from stationary speed sensors, it is economically
inefficient to equip them at all available roads in the net-
works. It is rather common that the rare speed sensor data
are integrated with the real-time GPS records of moving
vehicles to construct the speed map. Let £° C &€ be the set of
roads with stationary speed sensors, and &,” C & by the set
of roads whose real-time speed at time ¢ can be obtained
from vehicular GPS records. Since GPS records that can
contribute to inferring road speeds are typically generated
on the move, & is dynamic with respect to a changing ¢.
Let & = &£\ (ESUE) be the set of roads whose speed at
time ¢ cannot be directly obtained. Consequently, the traffic
speed estimation problem for urban road networks can be
expressed as follows:

1 o —

minimize MAPE = 1 3~ [%e0 = veol
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ee&,

where ¢ is a small positive Valueﬂ preventing the divide-by-

le =0.01kmh~—1! in the case studies.

zero issue, and 9. ¢ is the estimated speed of road e at time
t, which is obtained by

Vo = EST(V;", {P.|Ve € £}),

where Vo = {0c0|Ve € £}, Vi = {ve,|Ve € E5UEH} and
EST is the speed estimator.

III. TRANSFERABLE GRAPH CONVOLUTION
GENERATIVE AUTOENCODER

As introduced in Section [I] the ever-increasing size of
urban transportation networks is introducing great compu-
tational burden to city-wise road speed estimation. In this
section, we first introduce a graph-based convolutional gener-
ative neural network to effectively develop speed estimation
data in real-time for urban road networks. Then we investi-
gate a latent information transfer mechanism for the neural
network in order to further alleviate the computational effort
required. Finally, the detailed model training and testing
implementations are discussed.

A. Graph Convolution Operation

When estimating urban road speeds, there is an intuition
that roads shall have more prominent influence on their con-
necting neighborhoods than distant ones, and the influence
may decay rapidly when diffusing over the network. This
intuition has been justified in the previous literature, and can
be realized by the concept of graph convolution [12]. This
operation aims at extracting features from graphs, and puts
extra emphasis on the data correlation along graph arcs. By
convolution, graph convolution operation performs neighbor-
hood data fusion on the input source data with a receptive
field design according to the adjacency matrix of the graph.
Therefore, the output data corresponds to an arbitrary vertex
in the graph is in fact the result of shared information from
its graph neighbors. Furthermore, multiple sequential graph
convolution operations correspond to larger receptive fields
based on the self-multiplying adjacency matrices, leading to
a data fusion process of a wider range [13].

We adopt the graph convolution operation in [12] to
perform the convolution on urban road networks. While the
manipulation agent of this operation is the vertices of graphs,
we are more interested in the arc features, i.e., road data,
when estimating the traffic speed. This incompatibility can
be resolved by transforming the original urban road network
into its equivalent road-connectivity graph, in which each
vertex represents a road, and the connectivity indicates road
adjacency information. Specifically, a new undirected graph
R(E,.A) can be constructed by

A = {(er, e2)[[{fr(er), to(er)} N {fr(e2), to(ez)}| # 0,
Ve, eq € E}. (1

Subsequently, graph convolution operation takes the |P| + 1
road features (speed and properties) of |£| roads as input
and develops F' latent data features of the roads using
the adjacency matrix A of R according to the following
propagation rule:

Z=GC(X,A) =c(DZAD 2 XW +b), (2
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where X € RIEXUPIHD and Z € RIEIXF are the input
and output matrices, A e BlElxlel = {a;j} = A+ 1,
D = diag{a11, @z, - - }, and o(-) is a non-linear activation
function. In the propagation, two sets of tunable parameters
are adopted, namely W € RUPIHDXF and p ¢ RIEIXF,
When multiple graph convolution operations are chained, the
number of input features from the second operation should be
set to the number of output one of the previous operation. For
instance, if the output of the first operation is of size |E| x F,
then the number of input features for the second graph
convolution operation should also be F'. Note that in this
case, there is no hard limit on the number of output features
for the second operation. This propagation rule is motivated
by the first-order approximation of Chebyshev polynomials
of eigenvalues in the spectral domain [14]. It has been shown
that such approximation can result in highly competitive
performance for graph feature learning [12], [13].

B. Graph Convolution Generative Autoencoder

Empowered by the graph convolution operation, a GCGA
model was proposed to provide real-time estimation of traffic
speed data in urban road networks in [11]. The model inherits
the design principle of the Generative Adversarial Network
(GAN) [15] and autoencoder, in which two sub-neural-
networks form a two-player minimax game to generate
artificial speed data of networks that is indistinguishable
from the ground truths. Fig. (| presents an illustration of
GCGA model. An autoencoder-based graph feature generator
is employed to develop Vo with input available data at the
current time instance, i.e., VO+ and {P.|Ve € £}l This can
be achieved thanks to the autoencoder-like feature encoding-
decoding architecture of the generator. At the beginning
of feature generation step, the normalized available data
is input into the network with missing data entries set to
zeros. The three consecutive up-sampling graph convolution
operations enrich the data by producing 128, 256, and 512
features for each road, respectively, which receives diffused
information from its neighborhood road(s) along the graph.
Subsequently, the |£|x 512 feature matrix is decoded by three
other down-sampling graph convolution operations, each of
which reduces the number of features to 256, 128, and finally
1, respectively. The final |£| x 1 output matrix, after being
activated by an element-wise sigmoid function, resembles the
normalized complete road network speed data Vo.

2We adopt following road features as Pe, i.e., traffic speed limit, road
length and width, number of lanes, and number of point-of-interest sites
along the road.
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Then a graph feature discriminator is constructed to assess
the authenticity of the generated Vo with the prior knowledge
of the speed data pattern in V,",Vt € T. This network is
a stack of a 128-feature graph convolution layer and three
fully-connected neuron layers with 1024, 128, and 1 neurons.
Finally, the discriminator outputs a (0, 1) value indicating the
discriminators opinion on the authenticity of Vo. When fine-
tuning the parameters W and b, both sub-networks play the
minimax game with the following objective function:

. D
min ng%XL = E[logD(V;,07)]
+ Eflog(1 - D(G(V,6),67)),  (3)

where A% and @7 are the sets of parameters for the gener-
ator and discriminator, G(-,0%) and D(-,6P) are the loss
functions of the generator and discriminator, respectively.
At the beginning of this training process, 6 is initial-
ized to random values, which make the discriminator reject
G(V{,0%) easily, rendering a large L value. The training
algorithm then tries to adjust ¢ to generate realistic speed
data to compromise the discriminator (minimize L), while
adjusting #” in turn to distinguish the better data produced
by the generator (maximize L). This process repeats until
the generator is good enough to fool the discriminator, and
the produced speed data can resemble the ground truth.
When 6¢ is well-adjusted, the model can be applied to
estimate the speed data of urban road networks. Similar to the
training process, the incomplete available data is input into
the generator, which utilizes the fixed 6 values to calculate
Vo. Instead of assessing its authenticity with the discrimina-
tor, this estimation is considered a close approximation of
Vo, and can be used in subsequent ITS applications [11].

C. Latent Information Transfer

A key issue exists in training the GCGA model is the
scarcity of historical data V;7,Vt € 7. While it is possible
that data from a considerable number of past time instance is
available, the number of roads covered in £SUE;" is far less
than |£|, rendering highly sparse training data. This issue can
be resolved if the latent information extracted from one urban
road network can be transferred to other road networks. In
such a case, GCGA can be firstly pre-trained on large data-
sets with “denser” traffic data of benchmark road networks.
The resulting model is subsequently further fine-tuned with
the much smaller data-set of the target road network. It can
be expected that both the training time and the estimation
performance can be greatly improved compared with directly
training GCGA on the small data-set.




Nonetheless, the above analysis is established on the hy-
pothesis that the latent information of different road networks
can be shared. This is mostly true with respect to the graph
convolution operation. By inspecting its propagation rule
@, one may notice that the size of parameter W, i.e.,
(IP|+1) x F is actually unrelated to the road network size,
i.e., |€|. This implies that W is capable of extracting network
topology-agnostic information from the input data. While the
information is closely related to the types of connections
among the roads, it shall demonstrate similar characteristics
or probability distributions on different road networks.

On the other hand, the other parameter b is related to |£],
and encloses road network topological information. Mean-
while, we may reduce the size of topology-related parameter
set in order to alleviate the second-step training burden. This
can be achieved by separating b into multiple sub-parameters:

b = Bku,

where B € RIEXE e REXF and pF*F are the
three sub-parameters, and K is a new user-defined hyper-
parameter that defines the size of the sub-parameters, similar
to the definition of F. In such a way, both x and p is
not related to the road network size, and fine-tuning B
can be significantly more efficient than b, given a small K.
Consequently, the propagation rule of the graph convolution
operation is amended as follows:

7 =GC(X,A) =c(D 2 AD 2 XW + Brpu). (4)

D. Model Training and Transfer Learning

Before using the information-transferrable GCGA in de-
veloping traffic data, the network parameters, i.e., W, B, &,
w1 of each graph convolution operation and weight/bias in
the fully connected layers, need to be properly adjusted with
respect to the networks of both dense (called pre-trainig data)
and sparse traffic data (called training data). Specifically,
both data sets comprise samples of incomplete speed data
V;". We first augment the samples by artificially remove
speed data of random roads from one V;" and create M
new samples, denoted by V, , where m is the index of the
sample among M. Then we adjust the network parameters of
both the feature generator and discriminator iteratively with
the pre-training data. In each iteration, V, , is first input
into the generator to develop lA)tTm, which is an estimate of
V;". The mean squared error (MSE) between ]A)t_,m and V;'
on those artificially removed roads is computed, denoted by
MSE; ., The averaged MSE over all samples, i.e.,

. 1 M
LG = Rl Z Z MSE; ,,

teT m=1

is considered as the loss function of the generator. Subse-
quently, both V;" and f)[ ., are input into the discriminator,
and the binary cross entropy loss function is adopted to assess
its capability of identifying input samples that are artificially

generated instead of selected from the (pre-)training data set:

N
LP == [ynlog g + (1 — yn)log(1 — i),
n=1
where N is the total number of tested samples, y, and
Un are the truth and inferred authenticity assessments of
tested samples, respectively. The network parameters can be
optimized by Adam [16].

After training GCGA model with the pre-training data-
set, the network parameters can represent both topology-
agnostic and topology-dependent features of the input road
network. If the model is supposed to be transferred to another
urban road network, we only fine-tune the topology-related
network parameters, i.e., B, with the training data instead of
re-training all parameters from scratch. The only difference
of this second training process from the previous one is that
all other network parameters except for B is set constant.
In such cases, the relatively small training data set is still
sufficient to adjust values of B, which is significantly smaller
than #¢ U 9P according to the discussion in Section [I-C]
Finally, the newly tuned GCGA model can be adopted to
provide estimations on the new urban road network, and the
latent information from the original network is transferred to
the new one.

IV. CASE STUDIES

To fully evaluate the performance of the proposed trans-
ferrable GCGA model in estimating the traffic speed of
urban road networks with sparse data, we conducted two
comprehensive case studies with real-world data sets. We
first investigate the performance and computation speed
improvement of the latent information transfer mechanism.
Then we assess the influence of the control parameters, and
evaluate how the GCGA model structure impact the transfer
performance.

A. Data Sets and Simulation Configurations

In this work, we adopt the real-world traffic speed data
of four major cities in China for investigation, whose major
road networks are shown in Fig. 2| Specifically, we adopt
the traffic data of 1386 roads in Beijing during the year 2018
as the pre-training data set, which comprises 105120 time
instances and more than 100 million data entries. In addition,
we also employ the traffic data of Shanghai, Guangzhou,
and Shenzhen during the thirty days in November 2018
as three independent training data sets, each of which has
1522, 1024, and 400 roads in the set, respectively. Each
training data set comprises 8640 time instances, which is way
smaller than the Beijing data. To emulate real-world cases
that stationary speed sensors and crow-sourced vehicular
GPS records are relatively rare, we only retain a random
number of data entries in all time instances during training.
This data retention rate is denoted by «, and set to 15%
unless otherwise stated. For cross-validation, all data sets are
grouped into three non-overlapping sub-sets, i.e., a training
set with 50% of all time instances for network parameter
tuning, a validation set with 25% instances for training
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process termination, and a testing set with the rest 25%
instances for performance assessment, which is conducted
on the removed roads in these instances using MAPE. The
validation set is evaluated after each training epoch in which
each instances from the training set is adopted to tune
the parameters, and the training process terminates when
validation set MAPE does not reduce for a consecutive three
epochs.

When pre-training and training GCGA, the control pa-
rameters K = 128 and M = 8. Training data is employed
in mini-batches with size 32, and batch-normalization [17]
is employed after each neural layers in GCGA. The model
is implemented with PyTorch [18], and all simulations are
conducted on Amazon EC2 P3 instances equipped with
nVidia Tesla V100 GPUs for neural network evaluation
acceleration.

B. Estimation Accuracy and Training Time

The main purpose of the information transfer mechanism
is to address the few-shot training data issue for urban road
networks. The accuracy of the estimated speed data is among
the most important metric in evaluating the efficacy of the
proposed mechanism, with training time another key con-
cern. In particular, we compare the MAPE performance of
the proposed mechanism with the direct training approach in
which the small training data sets of Shanghai, Guangzhou,
and Shenzhen are employed to train GCGA from scratch
without the aid of Beijing data pre-training. Since traffic
speed data tend to demonstrate stronger daily patterns than
other common time scales, we present the MAPE of every
five minutes in a day of either approach on all four urban
road networks in Fig. [3| In this figure, each data point is the

Guangzhou Shenzhen

Tllustration of latent information transfer among cities.

TABLE I
COMPARISON PRE-TRAINING AND TRAINING TIME

City Time with pre-train ~ Time w/o pre-train
Shanghai 1.3h 7.4h
Guangzhou 1.4h 5.7h
Shenzhen 0.7h 4.3h
Beijing - 57.1h

averaged MAPE over 30 days and all roads in the respective
road network except for “Beijing”, which is the averaged
result over 365 days. For the plots labeled by “Shanghai”,
“Guangzhou”, and “Shenzhen”, GCGA is pre-trained with
Beijing data, and further fine tuned with the traffic data of the
respective city. For the other plots end with “-Few” postfix,
only the few-shot data of the respective city, i.e., Shanghai,
Guangzhou, and Shenzhen, are used to train a GCGA.

From the simulation results it is obvious that the trans-
ferred information from Beijing data set greatly improves the
model quality when generating traffic speed data for the other
cities. On average, pre-training boosted GCGA achieves
satisfactory MAPE at 7.41%, 7.46%, and 7.44% for the
three few-shot cities, while the baseline MAPE for Beijing is
7.33%. The performance can be deemed outstanding when
compared with the few-shot training results, i.e., 9.34%,
9.92%, and 12.95% for the three cities, respectively. Since
the only difference between these two training approaches
is the pre-training process, the notable improvement can be
credited to the transferred latent information.

The training time for above pre-training and training
processes are recorded in Table [l The comparison clearly
indicates that pre-training GCGA model can help reduce
the subsequent training time greatly. This is due to the
significantly smaller parameter size, i.e., | B| compared with
|09 UOP|, to be adjusted after pre-training. While training a
GCGA model with Beijing data costs notably more time than
the others, the trained model can be both used to develop
speed data for Beijing and employed as the pre-training
model for other cities. To conclude, it is preferable to make
use of pre-trained GCGA model on large historical data set
than training the same model from scratch with few-shot data
in terms of both estimation accuracy and training time.

C. Parameter Sensitivity Test and Model Structure

In previous simulations, we set the control parameters
K = 128 and M = 8. In this subsection, we inves-
tigate GCGA’s sensitivity on them. Specifically, we test



TABLE I
RESULTS OF PARAMETER SENSITIVITY TEST

. ) K M
City Metric 32 64 28 256 2 ] g 16
Bejjing  MAPE | 8.62% TO8% 733% 727% | 1044% 801% T33% 7.33%
Time | 48.3h 52.0h 57.0h 72.4h | 187h 30.8h 57.1h 112.2h
Shanghai  MIAPE | 8.38% T93% 7A1% 739% | 1406% 884% TAI% TA0%
Time | 1.2h  12h 1.3h  1.6h | 03h  07h 1.3h  2.5h
Guangzhos  MAPE | 850% 7T87% 7TA6% 745% | 1230% 8A1% 7A6% T45%
Time | 1.2h 13h 14h 1.6h | 04h  07h  1.4h  2.8h
Shenhen MIAPE [ 814%  7.65% 7A4% 7A1% | 1877% 8.92% TA4%  T31%
Time | 0.6h 07h  07h  10h | 02h  04h 07h  14h

the generated urban speed estimation accuracy and train-
ing time on various parameter configurations, i.e., K €
{32,64,128,256} and M € {2,4,8,16}. All other settings
are identical to those in Section [[V-B| and the simulation
results are presented in Table [l The table implies that
while increasing either K or M can reduce the averaged
MAPE on all cities, the training time also increases roughly
linearly with respect to the parameter value. In the meantime,
reducing either parameter below the default value leads to re-
duced training time at the expense of deteriorated estimation
MAPE. Since the performance improvements for K > 128
and M > 8 is not as significant as the proportionally
growing training time, K = 128 and M = 8 are a pair
of best performing control parameters considering both the
estimation accuracy and training time.

V. CONCLUSIONS

In this work, we propose a latent information transfer
mechanism for online urban road network speed estimation
with few-shot historical data. The transfer can be achieved
by first modifying the propagation rule of graph convolu-
tion operation in the GCGA model and then minimizing
the size of network topology-dependent model parameters.
Specifically, the original parameter b is expressed as the
multiple of three new parameters, i.e., By, in which the
topology-dependent parameter B is generally smaller than
b. This design not only reduces the computation complexity
of adjusting b in GCGA, but also enables other topology-
agnostic parameters to extract and represent transferrable
information between road networks. The new model, when
applied to estimate data for road networks with few data,
can be firstly pre-trained on other road networks with large
historical data sets. Subsequently, the few data from the
target networks are only employed to adjust the values of
new parameter B. To evaluate the proposed mechanism,
we conducted a series of case studies on three cities in
China with few-shot data, i.e., Shanghai, Guangzhou, and
Shenzhen. The abundant historical data from Beijing, China
is employed for pre-training. Simulation results demonstrate
that the proposed mechanism can develop outstanding speed
data estimations compared with the no-pre-training method,
and the training time can also be reduced. Finally, we
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