
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Online Vehicle Routing With Neural Combinatorial
Optimization and Deep Reinforcement Learning

James J. Q. Yu , Member, IEEE, Wen Yu , Senior Member, IEEE, and Jiatao Gu

Abstract— Online vehicle routing is an important task of
the modern transportation service provider. Contributed by the
ever-increasing real-time demand on the transportation system,
especially small-parcel last-mile delivery requests, vehicle route
generation is becoming more computationally complex than
before. The existing routing algorithms are mostly based on
mathematical programming, which requires huge computation
time in city-size transportation networks. To develop routes
with minimal time, in this paper, we propose a novel deep
reinforcement learning-based neural combinatorial optimization
strategy. Specifically, we transform the online routing problem
to a vehicle tour generation problem, and propose a structural
graph embedded pointer network to develop these tours itera-
tively. Furthermore, since constructing supervised training data
for the neural network is impractical due to the high computation
complexity, we propose a deep reinforcement learning mechanism
with an unsupervised auxiliary network to train the model
parameters. A multisampling scheme is also devised to further
improve the system performance. Since the parameter training
process is offline, the proposed strategy can achieve a superior
online route generation speed. To assess the proposed strategy,
we conduct comprehensive case studies with a real-world trans-
portation network. The simulation results show that the proposed
strategy can significantly outperform conventional strategies with
limited computation time in both static and dynamic logistic
systems. In addition, the influence of control parameters on the
system performance is investigated.

Index Terms— Online vehicle routing, logistic system, neural
combinatorial optimization, deep reinforcement learning, intelli-
gent transportation.

I. INTRODUCTION

INTELLIGENT transportation system (ITS) is an essen-
tial constituting component of future sustainable smart

cities [1], [2]. Contributed by the advanced sensing, compu-
tation, and communications techniques, ITS is expected to be
a feasible solution to accommodate the ever-increasing vol-
ume of transportation demand with environmentally friendly
approaches [3]. Electric vehicles (EVs), a kind of vehicles
powered by electric engines instead of fossil fuel-driven
combustion engines, are among the most influential com-
ponents that can effectively reduce the carbon footprint of

Manuscript received June 13, 2018; revised January 8, 2019; accepted
March 31, 2019. The Associate Editor for this paper was E. Kaisar.
(Corresponding author: James J. Q. Yu.)

J. J. Q. Yu is with the Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
(e-mail: yujq3@sustech.edu.cn).

W. Yu is with the Department of Automatic Control, National Polytechnic
Institute (CINVESTAV-IPN), Mexico City 07360, Mexico.

J. Gu is with the Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong.

Digital Object Identifier 10.1109/TITS.2019.2909109

the transportation sector [4]. Recent academic research and
industrial investigations suggest that EVs will revolutionize
the automobile industry in the next decade [3], [5].

At the same time, small-parcel last mile delivery by ground
transportation is becoming a more significant burden to mod-
ern transportation systems in recent years due to the prolifera-
tion of e-commerce demands [6]. It is expected that the parcel
delivery market will be growing annually at between 7% to
10% in mature markets, and at more than 300% in developing
markets with huge demographic dividend, e.g., China and
India [6]. The growth of this market is also accompanied
by the customer desire for fast home delivery at low prices.
This introduces challenges to ITS for entertaining the massive
requests on faster traffic, and to the logistics industry for
developing cost-efficient parcel delivery solutions [6].

The size, growth, and cost-awareness are providing ample
grounds for future developments of small-parcel last mile
delivery considering ITS techniques. Research effort has been
devoted in devising new logistic systems and strategies to
embrace the new challenges, e.g., [7], [8]. For instance,
an autonomous vehicle logistic system (AVLS) was recently
proposed to employ electric-driven autonomous vehicles (AVs)
as logistic carriers [9]. As a green logistic system, AVLS
greatly benefits from the unmanned and “green” nature of
battery-driven AVs, as well as renewable generations to reduce
the cost while being eco-friendly. Additionally, the system
also brings other merits to the greater smart cities context,
e.g., mitigating renewable fluctuations [9].

However, there exists a significant research gap in the
last mile delivery investigations. While existing research can
accommodate a large volume of logistic requests, the system
response time is typically disappointing in city-size transporta-
tion systems. As a result, it is hard to achieve fast home
delivery for future smart cities, and the system cannot adapt
to online changes and updates in a timely manner. This issue
is mainly contributed by the excessive computational com-
plexity in calculating (sub-)optimal routes for logistic carriers
(e.g., [9]–[11]), which are customarily developed by vehicle
routing problems (VRPs) and their variants. A recent survey
on city VRP, i.e., [8], shows that a majority of the current
vehicle routing research formulates the problem as a mixed
integer program (MIP), which is NP-hard [8]. While current
commercial optimization solvers can effectively solve such
problems, the investigated instance sizes are typically small.
Otherwise, the computation time may increase exponentially.
Furthermore, other problem formulation techniques summa-
rized in [8], e.g., statistics, stochastic modeling, and dynamic

1524-9050 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6392-6711
https://orcid.org/0000-0002-9540-7924

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

programming, incur similar or even larger computational
complexity than MIP, rendering significant route generating
and system response time. This is a problem related to not
only small-parcel last mile delivery with EVs, but also all
time-sensitive VRP applications, e.g., [12], [13]. A new online
strategy that can route vehicles with minimal computation time
is required by smart cities to fully enjoy the benefits of modern
ITS.

The prospects of a fast route generation algorithm make
artificial intelligence technique, especially machine learning
a compelling solution. There are some results published in
the literature. For instance, [14] proposed a neural network-
based intelligent system to predict energy consumption and
travel time for route construction. Reference [15] performed
a thorough parametric study of using four heuristic and
meta-heuristic algorithms to solve vehicle routing problems
with time windows. Reference [16] also presented a meta-
learning approach to help select appropriate meta-heuristics
for solving this problem. All these work makes use of the
generalization capability of artificial intelligence to develop
vehicle routes with satisfactory performance. Nonetheless,
the proposed methods still suffer from the computational
complexity issue brought by city-size large transportation
networks.

In this work, we propose an online routing strategy based
on recent advances in deep learning techniques. We take the
system model of AVLS as an example and construct a deep
neural network model to iteratively develop routes for vehicles
in the system. Furthermore, since constructing the model
training cases with optimization-based approaches is imprac-
tical due to the significant computation time, we propose
a deep reinforcement learning (DRL) strategy to determine
the model parameters. The proposed strategy is especially
appealing to time-sensitive vehicle routing applications, since
the route generation (inference) process is extremely fast.
While the parameter training process is time consuming,
it can be conducted offline. Additionally, rather than training
separate models for every problem instance as similarly did in
optimization-based strategies, this methodology can perform
well on any problem given that they follow similar trans-
portation network characteristics. Hence, trained models can
address dynamic systems, rendering conventional repetitive
problem-solving process obsolete.

The main contribution is summarized as follows:

• We propose a distributed neural optimization strategy to
generate online vehicular routes in green logistic systems
with minimal computation time. The strategy makes use
of a heuristic and deep neural networks to achieve this
objective.

• We devise a deep reinforcement learning algorithm to
determine the neural network model parameters without
knowledge of optimal solutions to the training data.
A multisampling tour construction algorithm is also pro-
posed to further improve the system performance.

• We validate the performance of the proposed strategy with
extensive case studies. We also investigate the sensitivity
of control parameters in the system.

TABLE I

DEFINED SYMBOLS IN GREEN LOGISTIC SYSTEM ONLINE ROUTING

• The proposed strategy is not limited to green logistic
systems. The design principle can be employed to solve
VRP and other constrained combinatorial optimization
problems.

The rest of this paper is organized as follows. We first give
the system models of green logistic systems components in
Section II, and discuss the formulation and requirements of
the online routing problem. Section III presents the proposed
distributed neural optimization strategy. We elaborate on the
proposed DRL algorithm in Section IV. In Section V, the sys-
tem performance is evaluated by comprehensive case studies.
Finally, this paper is concluded in Section VI.

II. GREEN LOGISTIC SYSTEM AND ONLINE ROUTING

In this section, the mathematical models for green logistic
systems are firstly presented. Then we discuss the formulation
and concerns on the online vehicle routing problem.

A. System Models

In this work, we formulate green logistic systems based
on the previous work [9]. There are generally five basic
components that are essential for routing vehicles in green
logistic systems, namely, transportation network, vehicles,
logistic requests (requests for short in the sequel), renewable
generations, and depots. Table I summarizes the symbols
adopted to define their models.

1) Transportation Network: We consider a discrete time
view T, which divide the time horizon into slots of length
�T [9]. We first define the transportation network as a directed
graph G(V, E). Each vertex i ∈ V in the graph denotes a
point-of-interest (PoI), which is comprised of road intersec-
tions, vehicle and charging facility (renewable generations
and depots) locations, and request pickup/delivery locations.
Each edge (i, j) ∈ E represents the geographical vehicular
roads connecting these PoIs, and is associated with a length
Dij and an estimated travel time Ti j . Given a transportation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YU et al.: ONLINE VEHICLE ROUTING WITH NEURAL COMBINATORIAL OPTIMIZATION AND DEEP REINFORCEMENT LEARNING 3

network, the corresponding graph G can be constructed in a
two-step process. First, all PoIs in the network are extracted,
and corresponding nodes are created in the graph. Then each
road is included in the network by creating an edge from its
starting node to its ending one.

2) Autonomous Vehicles: We use K to denote all vehicles
in the system, each of which has independent properties,
e.g., battery capacity and charged energy. At planning time,
each vehicle k ∈ K starts from location L0

k ∈ V to serve
requests, and it will stop at L∗k ∈ V after all services. Each
vehicle1 is equipped with a battery of size Ek , which has
E0

k initial energy at the planning time. Vehicles use energy to
drive on roads in the transportation network, and we use Ek,i j

to denote the consumed energy for k to drive on road (i, j).
They can get charged at either renewable generations or depots
at the rate Rk , and the charging efficiency is denoted by ηk .
Finally, k has a logistic capacity represented by Ck , and it
initially has a set of on-board requests Qk to be delivered.

3) Logistic Requests: The requests can be parameterized
by the following attributes. We use Q to denote the current
requests in the system that have not been picked up by any
vehicles. For each request q ∈ Q ∪⋃

k∈KQk in the system,
we use P0

q and P∗q to denote its pickup and delivery locations,
respectively. The request requires capacity Cq in order to be
loaded on an arbitrary vehicle, and it needs to be delivered
before time Tq .

4) Renewable Generation and Depots: In green logistic
systems, vehicles can get charged at depots d ∈ D and
renewable generations g ∈ G, each of which is located at
Vd (depot) or Vg (renewable generation). Vehicles can freely
charge energy from depots, which directly draw power from
the grid. Additionally, we follow the configurations in [9], [17]
and consider that each g can provide at most �g,t energy
to charge vehicles in time slot t . All other models of the
system is identical to [9]. While renewable generations have
limited charging capacity, returning to the few depots can be
inefficient for vehicles. How to optimally route vehicles to
serve requests with constraints while maintaining sufficient
energy in batteries is a key problem in green logistic systems
and other EV-driven logistic systems [9].

B. Online Routing in Green Logistic Systems

We focus on developing an online routing strategy for
green logistic systems, which guides the vehicles to traverse
the transportation network, pickup and deliver requests as
possible, and get charged as deemed necessary. By intuition,
this can be achieved by formulating an optimization problem
regardless of the computation time. Whenever the system
changes (e.g., new request submitted, renewable generation
and traffic condition updated), the optimization is solved to
develop the new vehicular routes. Let xk

q be a binary indicator
on whether request q ∈ Q is delivered by vehicle k, and
yk

i j be a binary indicator on whether k will drive along
road (i, j). The objective of green logistic systems routing

1In this work, we consider all vehicles in green logistic systems are battery-
driven. Other vehicles can also be easily adopted in this work by changing
the energy-related definitions to their fuel-based counterparts.

can be formulated as

maximize C
∑

k∈K

∑

q∈Q
xk

q −
∑

k∈K

∑

(i, j)∈E
Dij yk

i j , (1)

where C is a large constant value. This objective function
tries to maximize the number of delivered logistic requests
while minimizing the total driving distance of all vehicles.2

To develop feasible routing plans for all vehicles, system con-
straints must be respected. In particular, they can be classified
in the following categories, and the respective mathematical
formulations were discussed in [9], [18]:
• The developed routes must be connected.
• The on-board requests must be delivered.
• The request delivery time must be earlier than the respec-

tive deadline.
• The logistic capacity on each vehicle cannot exceeds its

limit during the whole trip.
• The on-board battery cannot be depleted or over-charged

during the whole trip.
• The renewable energy charging limit must be respected.

To develop closed-form expressions for these constraints,
additional binary and continuous variables are required in the
formulation [9], [18].

Nonetheless, the problem is NP-hard [8]. It cannot be
efficiently solved on problem instances of practical sizes,
e.g., hundreds of vehicles in a large transportation network
with tens of thousands of PoIs as demonstrated in [9]. There-
fore, such a problem formulation can only develop offline
routing plans given static system properties, which is a strong
assumption that greatly undermines the practicality of green
logistic systems [9]. By “online”, the routing strategy should
be able to cope with dynamic systems in which existing
requests can be canceled, new requests can be submitted,
renewable generation outputs can be updated, etc. It needs
to respond to these changes immediately, or at least with
insignificant delay.

Over the last few years, new methods have been devised
to address combinatorial optimization problems with recent
advances in deep learning techniques, which are generally
called neural combinatorial optimization [19]. By tailoring the
parameters in deep neural networks, this approach can effec-
tively migrate the computational burden from the online math-
ematical programming-based solution development phase to a
new offline model training phase. Consequently, the decision-
making process can be drastically accelerated, in which the
quality of solutions are highly dependent on the neural network
architecture and model training method [20], [21]. In this
work, we adopt the recent progress on neural combinatorial
optimization and develop a neural optimization-based online
routing strategy for green logistic systems.

III. DISTRIBUTED NEURAL OPTIMIZATION STRATEGY

In this section, we first propose a distributed neural opti-
mization strategy to solve the online routing problem. Then
we elaborate on the formulation of each component in the
strategy.

2There are two other routing objectives in [9]. Both of them can be adopted
in this work with minor modifications.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 1. Flow chart of distributed neural optimization strategy for online
routing in green logistic systems.

A. Proposed Strategy

In the online routing problem, given the transportation
network G, we are concerned with finding a sequence of
locations π , termed a tour, for each vehicles subject to
constraints. These tours are designed such that all request
pickup/delivery locations are visited once with the minimum
driving distance. When deem necessary, some of the charging
facilities can also be visited, which, together with request
pickup/delivery locations, are termed as stops. In each pair of
connected stops in a tour, each vehicle drives along an optimal
route considering the driving distance and energy consumption
constraints.

In the proposed neural optimization strategy, we adopt an
information center solely for information dispatch. At the
beginning of each time slot, the information center informs
each vehicle of the current dynamic system state, symbolized
by S, including the available requests, renewable generation
outputs, the next stop of other vehicles in the system, and
their battery charging demands if available. Then the vehicle
constructs a new tour graph using the system state, and the
graph is input into a deep neural network to develop its own
future tour. Finally, the vehicle reports its tour to the control
center, and drives towards the next stop in the tour along the
tour graph in this time slot. This process is depicted in Fig. 1.

B. Tour Graph Creation

After receiving the dynamic system state, each vehicle will
first create a tour graph for the subsequent deep neural net-
work. While it is possible to input all nodes in a transportation
network into the deep learning model, the solution quality
deteriorates when the number of nodes exceeds 100 according
to [19], [22], which correspond to a very small transportation
network. In the meantime, vehicles in the system are actu-
ally more concerned with whether they will pickup/deliver
a request or stop to charge as their next objectives. Given
determined objectives, it is relatively trivial to develop detailed
routes. Base on the above idea, we propose a method to reduce
the transportation network to a much smaller tour graph for
each vehicle.

We first summarize the possible stops for a vehicle k.
According to the models in Section II-A, the vehicle is
interested in stopping at any of the following locations as the
next stop, which are categorized into five groups:

1) Delivery locations of on-board requests: {P∗q |q ∈ Qk}.
2) Pickup locations of other requests: {P0

q |q ∈ Q}.

Fig. 2. An example of tour graph creation.

3) Delivery locations of other requests: {P∗q |q ∈ Q}.
4) All charging facilities: {Vd |d ∈ D} ∪ {Vg|g ∈ G}.
5) Destination of k: L∗k .

All other nodes in V only serve as connecting points at
which k has no explicit intention to stop. Therefore, we can
enumerate all possible tours among these stops and construct
the tour graph for k as GS

k (VS
k , ESk). In this graph, the nodes

include previously summarized stops3 and the current vehicle
location L0

k . Then the edges can be heuristically created as
follows:
• Connect L0

k to locations in Groups 1, 2, and 4.
• Connect all locations in Groups 1–4 with each other.
• Connect all locations in Groups 1, 3, and 4 to L∗k .

Fig. 2 gives an example of how to create a tour graph given a
transportation network model. Finally, the shortest route of
each edge (i, j) ∈ ESk) with respect to the transportation
network G is calculated using existing path-finding algorithms,
e.g., A* search algorithm. The driving distance, energy con-
sumption, and estimated travel time of the route are recorded
as three weight attributes of the edge, denoted by wk

i j , uk
i j , and

tk
i j , respectively.

C. Deep Neural Network Architecture

The main objective of the deep neural network is to take
the system state and vehicle tour graph as inputs to develop
a tour, which has a minimal total travel distance. Inspired
by [19], we design a pointer network (PTRNET) [22] with
structural graph embedding (STRUCT2VEC) [23] to progres-
sively develop a complete tour for each vehicle.

Fig. 3 presents the architecture of the proposed deep neural
network. This network comprises two sub-networks, namely
an encoder and a decoder. The encoder network first takes the
system information, system state, and the previously develop
tour graph as inputs to embed the system into feature embed-
dings for each node in VS

k using STRUCT2VEC. More specifi-
cally, STRUCT2VEC extracts the features of nodes recursively
according to the corresponding graph structure. Given a
graph GS

k , STRUCT2VEC first initializes a p-dimensional
feature embedding μ0

i = 0 for each i ∈ VS
k . Then all

embeddings are updated synchronously and iteratively by

μr+1
i ← f (xi , {μr

j } j∈N (i), {wk
i j } j∈N (i), {uk

i j } j∈N (i),

{tk
i j } j∈N (i);�), (2)

3In implementation, charging facility nodes are duplicated in the graph as
{V ′d |d ∈ D} ∪ {V ′g |g ∈ G}, which represent that vehicles park at the location
without charging. This does not influence the strategy design.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YU et al.: ONLINE VEHICLE ROUTING WITH NEURAL COMBINATORIAL OPTIMIZATION AND DEEP REINFORCEMENT LEARNING 5

Fig. 3. Proposed PTRNET and STRUCT2VEC-based deep neural network
for vehicular tour generation. V = |VS

k |. A bigger arrow suggests that the
pointing node has the highest probability of being selected according to the
softmax operator in (5b).

where r is the number of iterations, xi is a q-dimensional node
features of i , N (i) is the neighbors of i in GS

k , and f (·,�)
is a generic nonlinear mapping parameterized by �. This
embedding update rule implies that the feature embeddings
are calculated based on the graph topology. The node features
xi can be propagated to the other neighbor nodes by f (·,�).
In this work, this nonlinear propagation function is defined as

μr+1
i ← ReLU

(
θ1

∑

j∈N (i)

μr
j + θ2

∑

j∈N (i)

ReLU(θ3w
k
i j)

+ θ4

∑

j∈N (i)

ReLU(θ5uk
i j)

+ θ6

∑

j∈N (i)

ReLU(θ7tk
i j)+ θ8xi

)
, (3)

where θ1, θ2, θ4, θ6 ∈ R
p×p , θ3, θ5, θ7 ∈ R

p , and θ8 ∈ R
p×q

are the model parameters (previously summarized as �), and
ReLU(z) = max{0, z} is the element-wise rectified linear unit.

The embedding for each node in VS
k is computed by (3)

for R iterations, where R is typically a small value, e.g., R =
4 [24]. Then the node embeddings are input into a PTRNET

recurrent neural network [20], [22], which consists of long
short-term memory (LSTM) cells [25] that take the input data
to develop a series of p-dimensional latent memory states

{Cenc
i ∈ R

p}|VS
k |

i=1 as follows:

Fi = σ(W f · [hi−1, μ
R
i] + b f), (4a)

Ii = σ(Wi · [hi−1, μ
R
i] + bi), (4b)

C̃i = tanh(WC · [hi−1, μ
R
i] + bC), (4c)

Cenc
i = Fi ∗ Cenc

i−1 + Ii ∗ C̃i , (4d)

Oi = σ(Wo · [hi−1, μ
R
i] + bo), (4e)

hi = oi ∗ tanh(Cenc
i), (4f)

where σ(z) = 1/(1 + e−z) is the sigmoid function, ∗ is
element-wise multiplication, W f , Wi , WC , Wo are the model
weight parameters, and b f , bi , bC , bo are the model bias
parameters. The embedding of L0

k is input into the network

first, then those of other stops are input by a random order.
Given all node embeddings, the encoder produces an encode
of the graph structure and node features as Cenc

|VS
k |

, which is

input into the decoder as the initial cell memory state.
Subsequently, we also adopt LSTMs cells to construct the

recurrent neural network model of the decoder in PTRNET,
which decodes the encoder output to the stops in tours. The
decoder, similar to encoder, also maintains its latent memory

states {Cdec
i ∈ R

p}|V
S
k |

i=1 calculated by (4) with Cenc
i replaced by

Cdec
i . The input of the first step in the decoder (〈g〉 in Fig. 3) is

a p-dimensional vector treated as a trainable parameter of the
whole neural network. Then the decoder iteratively constructs
a complete tour. In the i -th step, the decoder makes use of the

encoder memory states {Cenc
j }
|VS

k |
j=1 , its own current decoder

state Cdec
i , and the already constructed partial tour π(< i) to

produce a distribution over the next node to stop by in the tour.
This process mimics the attention mechanism in sequence-to-
sequence learning [26], which can be formally expressed as
follows using defined symbols:

a j =

⎧
⎪⎨

⎪⎩

νT · tanh(W encCenc
j +W decCdec

i)

if vehicle k can reach j given π(< i)

−∞ otherwise,

∀ j = 1, 2, · · · , |VS
k |, (5a)

A({Cenc
j }
|VS

k |
j=1 , Cdec;W enc, W dec, ν) � softmax(a),

(5b)

where ν ∈ R
p is an attention vector, and W enc, W dec ∈ R

p×p

are attention matrices. A(· · ·) is the attention function, and
softmax(·) is the softmax function, also known as normalized
exponential function. In Fig. 3, the node with the highest soft-
max probability is pointed by a bigger arrow. Consequently,
our PTRNET assigns the probability of visiting the next stop
π(i) as

p(π(i)|π(< i),S) � A({Cenc
j }|V

S
k |

j=1 , Cdec). (6)

This probability distribution stands for the degree to which
stop the decoder is pointing upon seeing a partial tour π(< i)
given system state S. When determining the next stop π(i)
based on π(< i), all available stops are randomly selected
based on the probability distribution p(π(i)|π(< i),S). Con-
sequently, the probability of a tour can be obtained using the
chain rule:

p(π |S) =
|VS

k |∏

i=1

p(π(i)|π(< i),S), (7)

whose right-hand-side components are represented with indi-
vidual softmax modules to construct a complete tour [19].

In this PTRNET, constructing appropriate node feature vec-
tors xi is critical to the system performance. These vectors
should include all necessary information of the vehicles,
logistic requests, and charging facilities. In this work, we
construct the vectors according to the type of nodes as
classified in Section III-B. Particularly, the current location
of vehicle k, i.e., L0

k , is encoded as 〈Ek, E0
k , Ck,

∑
k∈Qk

Cq 〉.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

The delivery location for q ∈ Q ∪ Qk is encoded as 〈Tq ,
−Cq〉. The pickup location for request q ∈ Q is encoded
as 〈Tq − Ti j , Cq , DK, Ti j , Dij , Ek,i j , Hq〉, where i = P0

q ,
j = P∗q , Ti j , Dij , Ek,i j are the travel time, distance, and
energy consumption for k to drive from P0

q to P∗q on G,4

respectively, and Hq ∈ B indicates whether q will be picked
up by other vehicles at their next stop. Finally, the charging
facilities c ∈ G ∪ D are encoded as 〈η�̃Vc , ηRk〉, where �̃Vc

is the available charging energy if k drives to Vc immediately.
As to L∗k , no special node features are assigned, rendering
xL∗k = ∅.

In this design, xi for different nodes are of various lengths.
Hence, the model parameter θ8 in (3) is extended to four
variants, i.e., θ0

8 ∈ R
p×4, θdel

8 ∈ R
p×2, θ

pck
8 ∈ R

p×7, and
θ

chg
8 ∈ R

p×2. Their inner products with the node features
of L0

k , delivery locations, pickup locations, and charging
facilities defined above are regarded as the last element of (3),
respectively. Consequently, given the current system state and
trained model parameters, the proposed deep neural network
can develop a tour π comprised of next stops on the trans-
portation network.

One more thing to note is that the design of PTRNET

is actually topology-agnostic thanks to the recurrent link in
LSTM and STRUCT2VEC embedding [19], [22]. This means
that we can actually train the model parameters with relatively
small-scaled data for faster training, and the system can be
used to address large problem instances with similar graph
characteristics. This idea partially incentivizes the incorpora-
tion of DRL into parameter training, which will be elaborated
on next.

IV. DEEP REINFORCEMENT LEARNING

In Section III we propose a deep neural network which
takes the transportation network node features as inputs and
generates a complete tour π of these nodes with well-trained
model parameters. The neural system aims to solve the compu-
tational burden issue in large online vehicle routing problems.
Typically, the network parameters in such systems can be
well trained using a supervised loss function evaluating the
cross entropy between the network’s output probabilities and
the optimal solution to the original problem [22]. However,
this training approach is undesirable for neural combinatorial
optimizations [19]. In such training process, a great number of
training cases constituted by both the system data (network,
vehicles, requests, etc.) and the corresponding optimal solution
is required. Nonetheless, the optimal solutions cannot be easily
obtained without extensive computation. Additionally, as the
vehicle routing problem is NP-hard, using exact solvers to
construct a training data set at a considerable size requires
huge computation time, rendering the approach impractical.
Alternatively, DRL can be employed as the training paradigm
of the proposed deep neural network model. Unlike supervised
learning, DRL does not heavily rely on the optimal solu-
tions, but instead uses a reward mechanism to incentivize the
algorithm to achieve better solutions. Since we can construct

4The values for Ti j , Di j , Ek,i j are actually recorded in tk
i j , w

k
i j , uk

i j when
creating the tour graph for k, respectively.

a relatively simple-to-evaluate algebraic reward mechanism
based on the objective and constraints of the original route
optimization problem, the computational complexity can be
greatly reduced. We adopt the model-free policy-based rein-
forcement learning technique to determine the model parame-
ters, namely, θ matrices in (3), W and b matrices in (4), and
ν and W matrices in (5). We use the symbol ϒ to represent
the collection of all model parameters.

A. Reward Function

We first design a reward function for an individual vehicle
k to represent the quality (“desireness”) of tours with respect
to various system states. This function later solely guides the
reinforcement learning algorithm to adjust ϒ such that the
reward can be maximized. Therefore, this reward function
should consider the training objective of the routing optimiza-
tion problem, while imposing penalties to constraint violations.
The reward function benefits from the NP-completeness char-
acteristic of the optimization problem, i.e., polynomial time
for verifying a solution, thus resolving the computationally
expensive nature of supervised learning with optimal routes.
We define the reward function of the online routing problem
as follows5:

J (ϒ|S) = Eπ∼pϒ (·|S)

[
O(π |S) − P(π |S)

]
, (8)

and during training, the training cases can be drawn from a
distribution P , which yields random system states and subse-
quently random tour graphs. Note that P can generate much
smaller tour graphs than the real-world problem instances,
given that they share similar characteristics, e.g., request fre-
quency, traffic flow properties, etc. The total training objective
involves Monte Carlo sampling from this distribution, i.e. [19],

J (ϒ) = ES∼P J (ϒ|S). (9)

In (8), O(π |S) and P(π |S) are the objective reward and
constraint penalty functions, respectively:

O(π |S)=
∑

q∈Q
xk

q − C1

∑

(i, j)∈Eπ (L∗k)
wk

i j , (10a)

P(π |S)=C2

∑

q∈Q∪Qk

max{tP∗q ,k − Tq , 0}

+C3

∑

i∈π
max{ci,k − Ck, 0} + C4 × cL∗k ,k

+C5

∑

i∈π
max{−ei,k , 0}+C6

∑

i∈π
max{ei,k−Ek, 0}

+C7

∑

i∈π∩{Vg |g∈G}
max{Rk×|{ j ∈π | j= i}|−�̃i, 0},

(10b)

where

xk
q =

{
1 P∗q ∈ π

0 otherwise
, ∀q ∈ Q, (10c)

5 pϒ(·|S) is the probability distribution of p(π |S) parameterized by ϒ but
without a deterministic π . See [19] for more detailed explanations.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YU et al.: ONLINE VEHICLE ROUTING WITH NEURAL COMBINATORIAL OPTIMIZATION AND DEEP REINFORCEMENT LEARNING 7

and

Eπ (i) = {(π(j), π(j + 1))| j = 1, 2, · · · , |π(< i)|}, (10d)

tP∗q ,k =
∑

(i, j)∈Eπ (P∗q)

tk
i j , (10e)

ci,k =
∑

j∈π(<i)

c j,k, (10f)

ei,k = E0
k −

∑

(i, j)∈Eπ (i)

uk
i j + ηRk

× ∣
∣{i ∈ π ∩ ({Vd |d ∈ D} ∪ {Vg|g ∈ G})}∣∣ (10g)

where Eπ(i) is the connected edges in a tour π until arriving
at stop i , tP∗q ,k is the arrival time of k at the delivery location
of q , ci,k is the used logistic capacity on k at i , and ei,k is the
battery energy of k at i , respectively.

In the objective reward function (10a), successfully deliv-
ering a request can increase the reward value by one, and
traversing the transportation network reduces the reward value
with respect to the total driving distance and a reward coeffi-
cient C1, which is a control parameter. Then in the constraint
penalty function (10b), the penalty term with coefficient C2
increases the penalty value if requests are delivered later than
respective deadlines. The next term with C3 penalizes the total
reward if the on-board logistic capacity exceeds the limit. The
term with C4 penalizes the reward if there are still on-board
requests when arriving at the final location. The next two terms
with C5 and C6 coefficients reduce the reward if the battery is
depleted or over-charged, respectively. And the final term with
C7 coefficient limits the energy usage at renewable generation.
These two functions cooperate to reward the training process
upon delivering requests, and penalize the algorithm when any
previously summarized constraint is violated.

B. Policy Gradients Network Parameter Optimization

In this work, we follow policy gradient and stochastic
gradient descent methods to train the model parameters ϒ
using (8). The gradient of (8) can be formulated using the
REINFORCE algorithm [27] as follows:

∇ϒ J (ϒ|S) = Eπ∼pϒ (·|S)

[(
O(π |S) − P(π |S)− b(S)

)

×∇ϒ log pϒ(π |S)
]
, (11)

where b(S) is a baseline function which estimates the expected
reward function value on system state S independent of π [27].
This gradient function can be approximated with Monte Carlo
sampling as follows:

∇ϒ J (ϒ) ≈ 1

B

B∑

i=1

[(
O(πi |Si)− P(πi |Si)− b(Si)

)

×∇ϒ log pϒ(πi |Si)
]
, (12)

where B is the number of i.i.d. samples S1,S2, · · · ,SB ∼ P ,
and πi ∼ pϒ(·|Si). From (12) it can be observed that given a
well-formed b(S) function, the gradient of (8) can be easily
computed. According to [19], a parametric formulation of b(S)
can typically outperform the traditional and popular exponen-
tial moving average approaches. Hence, we follow [19] and

Algorithm 1: PTRNET and CRITNET Training
Data: P , B
Result: ϒ ,ϒ ′

1 Initialize PTRNET parameters ϒ and CRITNET parameters
ϒ ′.
while parameters not converge do

2 Sample Si ∼ P, i = 1, 2, · · · , B .
Sample πi ∼ pϒ(·|Si), i = 1, 2, · · · , B .
Calculate bi ← bϒ ′(Si), i = 1, 2, · · · , B with CRITNET.
gϒ ← 1

B

∑B
i=1

[(
O(πi |Si) − P(πi |Si) − b(Si)

) ×
∇ϒ log pϒ(πi |Si)

]
.

Lϒ ′ ← 1
B

∑B
i=1 ||bi −

(
O(πi |Si)− P(πi |Si)

)||22.
Update ϒ ← ADAM(ϒ, gϒ).
Update ϒ ′ ← ADAM(ϒ ′,∇ϒ ′ ,Lϒ ′).

3 end

construct an auxiliary neural network to learn the expected
reward values given arbitrary S. This network is called a critic
network (CRITNET) and is parameterized by ϒ ′. CRITNET

makes use of the encoder network of the proposed PTRNET

as depicted in Fig. 3, whose latent memory states {Cenc
i }
|VS

k |
i=1

are subsequently processed by another LSTM processing block
and decoded by two fully-connected ReLU layers [19]. The
output of CRITNET is a scalar estimating b(S) given S as
the network input. This output acts similar to the purpose of
the optimal objective function values in a supervised learn-
ing paradigm. Due to the relatively computationally efficient
nature of forward propagating a neural network (CRITNET in
particular), such method greatly reduces the computation time.

Finally, we adopt the asynchronous advantage actor-critic
training method [28] to train the proposed PTRNET and CRIT-
NET asynchronously. The pseudo-code of the training process
is described in Algorithm 1. In the algorithm, the model
parameters are updated iteratively. In each iteration, new
tour graphs (constructed by system states as described in
Section III-B) are firstly sampled from P (line 3), whose tours
are then developed using PTRNET (line 4). The estimated
reward value of these states are also generated using CRITNET

at the same time (line 5). Then the gradient of PTRNET

is calculated using (12) (line 6), and the mean squared
error objective of CRITNET is computed by 1

B

∑B
i=1 ||bi −(

O(πi |Si)−P(πi |Si)
)||22 (line 7). Lastly, the model parameters

are updated using the Adam optimizer [29] (lines 8 and 9) with
a mini-batch size B . This finishes one iteration of the training
algorithm. The algorithm terminates when the parameters are
converged, or a pre-defined maximum number of iterations is
reached.

C. Multisampling Tour Construction

Using adjusted PTRNET parameters, we can adopt (3)–(7)
to iteratively construct one tour given an established tour
graph. In the meantime, this process is stochastic due to the
softmax function in (5), which yields the probabilities of
all stops as the next one given a partial tour. An intuitive
solution to develop deterministic tour is to select the stop with

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 4. Two-level transportation networks of Cologne. (a) Cologne city transportation network. (b) Cologne center network for training PTRNET and CRITNET.

the largest probability after softmax, which is termed greedy
search. Nonetheless, as will be shown in Section V, this greedy
search approach leads to unsatisfactory performance. This is
because that the immediate optimal stop of a partial tour
may not necessarily be the best one considering the complete
tour. Hence, we propose a multisampling tour construction
approach, termed sampling search, to develop the final tour
π given system states S and trained PTRNET parameters ϒ .
This approach samples M candidate tours with respect to the
probabilities developed by the stochastic policy p(π(i)|π(<
i),S) given in (6). These candidates are then evaluated by the
reward function (8), and the one with the largest reward is
retained. In this process, we do not enforce that all candidates
are different. Instead, a softmax temperature parameter K is
adopted to control the diversity. This is achieved by changing
the right-hand-side of (5b) to softmax(a/K). When K > 1,
the probability distribution developed by the softmax function
is less “steep”. Thus the candidates are more divergent. The
effectiveness of this multisampling tour construction approach
will be demonstrated in the following section.

V. CASE STUDIES

In this work, we propose a DRL-based distributed
neural optimization strategy to develop online vehicular
routes with minimal computation time. To fully
evaluate the performance of the proposed strategy, we
conduct comprehensive case studies with a real-world
transportation network and traffic data. We first investigate
the solution quality of the routes developed by the
proposed strategy, and compare it with existing baseline
strategies. Subsequently, we assess the performance of the
proposed and baseline strategies in addressing problem
instances with dynamic changes. Finally, we examine the
sensitivity of control parameters in the proposed strategy.

A. Test Settings

In this work, we adopt the transportation network and traffic
data of Cologne, Germany in all case studies. We obtain

the map data of the city from OpenStreetMap [30] using
OSMnx [31] as shown in Fig. 4a. The real-time traffic speed
of each road in the network is obtained from [32], which
contains 3.54billion GPS and speed records of more than
700 000 vehicle trips during 23hours in a typical working day.
We operate a green logistic system from 6:00 in the morning
to 22:00 or all requests are delivered, whichever is earlier.
The time horizon is divided into five-minute segments, and
the real-time traffic speed of any arbitrary road is obtained by
averaging all speed records that can be fitted to the road in
the corresponding time segment using the GPS records.

Similar to previous work [9], we consider vehicles with
heterogeneous configurations in the system. Specifically,
we adopt the battery charging and capacity configurations
of Nissan LEAF [33], Tesla Model S [34], and Tesla
Model X [35]. The charging efficiency of each vehicle is
a random value from 0.8 to 0.9, and each vehicle has a
random initial state-of-charge from 0.2 to 0.9 [9]. The energy
consumed for driving on an arbitrary road (i, j) is set to a
random value from 0.3Dij to 1.0Dij , which roughly resembles
the trend in [36, eq. (1)]. Each vehicle has a random logistic
capacity from 50 units and 100 units, and initially one to three
random requests have been loaded on-board as Qk for each
vehicle [9].

Additionally, all requests in the system are randomly gener-
ated. The pickup and delivery locations are randomly selected
from any POIs in the transportation network, and the delivery
deadline is set to a random value from one to five hours after
the request is created. Each request requires a random logistic
capacity from 5 units to 20 units for delivery. We randomly
allocate �|V|/4000� depots and �|V|/400� renewable genera-
tions in the transportation network. Furthermore, we adopt the
Eastern and Western Wind Integration Data Set by National
Renewable Energy Laboratory [37] to set the charging energy
data of each renewable generations in the network, in which
the generation profile is scaled down to less than 50 kW in
accordance with [9], [38].

In all case studies, we adopt LSTM cells with 128 hidden
units in PTRNET, and use mini-batches of 128 sequences [19].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YU et al.: ONLINE VEHICLE ROUTING WITH NEURAL COMBINATORIAL OPTIMIZATION AND DEEP REINFORCEMENT LEARNING 9

When training PTRNET with DRL and CRITNET, we con-
struct P as follows. We first extract the Cologne center
network as shown in Fig. 4b from the complete transportation
network. During the training process, mini-batches of B = 128
inputs are generated on-the-fly with this small transportation
network. We randomly generate three to five requests in each
input, and the resulting test case is used to construct a tour
graph to guide the parameter tuning of PTRNET and CRITNET

using Algorithm 1. The training time is approximately 22 h.
Furthermore, we experiment different tour construction

approaches proposed in Section IV-C, and label the greedy
search approach with DRL-greedy. We also test M ∈
{128, 1280, 12 800}, which are labeled with DRL-sample
@128, DRL-sample@1k, and DRL-sample@13k, respectively.
Finally, we try sampling vehicular tours for one minute, and
the best tour is labeled with DRL-sample@1min. All tours are
sampled in parallel with 16 concurrent processes.

The proposed neural network is modeled with PyTorch,
and all simulations are conducted on multiple computing
servers, each equipped with two Intel Xeon E5-2683v4 CPUs
at 3.00 GHz and 128GB RAM. nVidia GTX 1080 Ti GPUs are
employed for neural network computing acceleration. Finally,
parameters �t = 1 min, {Ci }7i=1 = {10−4, 10−2, 10−2, 10−1,
10−1, 10−1, 10−2}, and K = 2. The latter two are empirically
set, whose sensitivity will be investigated in Section V-D.

B. Solution Quality and Computation Time

We first investigate the solution quality of the proposed
neural optimization strategy. We randomly generate 100 cases
on the Cologne transportation network as shown in Fig. 4a,
each of which has 100 random vehicles serving 200 random
requests. For the proposed strategy, we employ all DRL
approaches defined in Section V-A on each test case to develop
vehicular tours for each vehicle in parallel. Additionally, for
comparison, we adopt the conventional mathematical program-
ming approach proposed in [9], [18] on each of the test
cases. As this work is dedicated to propose an online routing
strategy that has a fast system response time, we consider the
intermediate solutions developed by the mathematical program
after searching for 1 min, 10 min and 60 min, and label them
with MIP@1min, MIP@10min, and MIP@60min, respectively.
In the tests, the formulation of the mathematical program,
particularly a mixed-integer program, is identical to the defined
Problem 1 in [9]. Lastly, the global optimal solution, labeled
with Optimal, is obtained by solving the mathematical pro-
gram offline upon optimal or reaching 6 h computation time,
whichever is earlier. The mathematical program is solved with
Gurobi solver [39], and the results are presented in Table II.

From the comparison, it can be observed that the pro-
posed DRL-based neural optimization strategy can develop
significantly better vehicle routes with the same amount of
computation time. For instance, given one minute of time,
the proposed strategy (DRL-sample@1min) significantly out-
perform the conventional mathematical programming-based
approach (MIP@1min). In fact, MIP@1min fails to locate
even sub-optimal solutions, and DRL can even develop bet-
ter solutions with only few seconds. This is because the

TABLE II

PERFORMANCE COMPARISON OF ROUTING IN GREEN LOGISTIC SYSTEMS

mathematical programming-based approach cannot learn the
characteristics of the solution space from either empirical
data or previous calculations. Each time a new problem
instance is presented, the approach searches for the optimal
solution without any prior knowledge. On the other hand,
the proposed neural optimization strategy benefits from the
parameter training process, which extracts the solution space
characteristics and establishes a parameterized computation
graph to emulate the mathematical relationship defined by the
original optimization problem. In addition, since the online
tour inference process involves only algebraic calculations,
the computation time is greatly improved.

Besides the exact solution methods compared, we also
employ recent advances in meta-heuristics to handle the same
problem for a thorough comparison. Typically speaking, exact
solution methods and meta-heuristics stand on the two ends
of the spectrum: the former focuses on solution optimality,
while the latter strives for fast sub-optimal solution genera-
tion. In this test, we employ an evolutionary algorithm with
decomposition called M-MOEA/D [40] to solve the same
routing problem, according to the analysis and suggestion
by [16]. Nonetheless, as the algorithm was not designed
considering vehicle batteries and charging, we assume that
Ek,i j ≡ 0 for M-MOEA/D. Please note that the assumption is
invalid for the proposed solution approach, and this assump-
tion grants unfair advantage to M-MOEA/D. Similar to the
previous mathematical program, we also snapshot the optimal
solution from the evolutionary population after searching for
1 min, 10 min and 60 min, labeled with M-MOEA/D@1min,
M-MOEA/D@10min, M-MOEA/D@60min, respectively. The
results are also presented in Table II. From the results it is clear
that the proposed approach can again outperform M-MOEA/D
in terms of both solution quality and computational time,
even when the compared algorithm is solving a much simpler
problem. In addition, the employed evolutionary algorithm
occasionally develops infeasible solutions which miss few
logistic requests. The comparison indicate that the proposed
neural combinatorial optimization approach can better solve
this vehicle routing problem with constraints.

We present a more detailed analysis on the solution quality
of our strategy in Fig. 5, in which we sort the ratios to
the optimal driving distance of different tour construction
configurations. The results accords with Table II that the mul-
tisampling tour construction scheme can effectively improve

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 5. Sorted driving distance ratios to optimality.

TABLE III

PERFORMANCE COMPARISON ON MANUAL SPEED CHANGES

the solution quality. Meanwhile, the quality is not linearly
dependent to the computation time, i.e., number of samples
generated. It is clear that sampling different tours from the
softmax function in (5) suffers from diminishing return. There
is a trade-off between the solution quality and the computation
time, which can be easily controlled by system operators (via
parameter M) considering real-world system concerns.

Finally, it is worth investigation how the strategy performs if
the traffic conditions drastically deviate from the training and
testing conditions. Specifically, we randomly select 20% of
all roads in the 100 random cases and set their traffic speeds
to 20% of the original values. All other simulation config-
urations are kept identical to previous tests, and the results
are presented in Table III. From the results, it is clear that
only approximately 1% more travel distance is required despite
that the average network traffic speed is significantly reduced.
Additionally, while not presented in the table, the strategy can
still serve all requests. This indicates that the strategy can deal
with different traffic conditions satisfactorily.

C. Dynamic Scenarios

In the previous section, we employ a series of static
scenarios to evaluate the solution quality of the proposed
strategy. Nonetheless, in practice, it is highly possible that
the system is dynamic, e.g., requests changes and renewable
output updates. In this section, we study how such changes will
influence the performance of the proposed distributed neural
optimization strategy. Similar to Section V-B, we generate 100
random cases, each of which has 100 random vehicles and
100 initial random requests. We construct a dynamic green
logistic system for each test case by emulating the arrival of
new random requests with a Poisson process with number of
occurrence λ = 0.2 at a 1 min interval. Furthermore, each
renewable generation updates its output in every minute by
changing the available energy to a random value between

TABLE IV

PERFORMANCE COMPARISON OF ONLINE ROUTING IN
DYNAMIC GREEN LOGISTIC SYSTEMS

0.9�g,t and 1.1�g,t . All cases starts from 6:00 in the morning,
and the performance metrics are summarized at 22:00. The
adopted strategies are requested to make fast decisions and
serve as many requests as possible.

The simulation results are summarized in Table IV. In this
table, we present the average number of requests can be served,
the total driving distance of all vehicles, and the average
waiting time of new Poisson arrival requests before being
picked up. We employ strategies with average computation
times from 30 s to 10 min for comparison. Table IV clearly
demonstrates the efficacy of the proposed strategy. Specifically,
the strategy can serve more requests than the mathematical
programming-based strategy with a shorter driving distance
and request waiting time. From the table it can be implied
that increasing the computation time for the mathematical
programming-based strategy may potentially lead to more
requests being served. However, the increase is likely to
be not significant enough to compensate the longer request
waiting time. Therefore, the proposed strategy outperforms the
conventional routing strategy for green logistic systems when
the system is dynamic.

D. Parameter Sensitivity Analysis

In the proposed online routing strategy, there are two sets
of control parameters that may influence the solution quality.
In this section, we investigate the system sensitivity on them.

We start with {Ci }7i=1, which define the landscape of
model parameter searching space defined by (10). We re-train
PTRNET and CRITNET using {Ci×0.1}7i=1, {Ci×10}7i=1, and
{Ci×100}7i=1, and assess the performance deviations using the
same testing configurations as in Section V-B. The simulation
results are depicted in Fig. 6. From the figure it is clear that
the {Ci }7i=1 values adopted in previous sections are the best-
performing set. This is because while small {Ci }7i=1 values lead
to a smoother parameter searching space, the number of local
optimums is not reduced. Since the penalty function (10b)
yields weak penalty values upon constraint violation, it cannot
provide effective guidance for the employed Adam solver to
find the global optima, rendering inferior system performance.
On the other hand, large {Ci }7i=1 values artificially create steep
“traps” at local optimums. This makes the reward for DRL
training more sparse than small {Ci }7i=1 values. Thus the para-
meter searching is more momentum-dependent, which does
not work well in the proposed neural optimization strategy.

Similarly, we test the sensitivity of parameter K , which con-
trols the sample diversity in the multisampling tour construc-
tion scheme. Since K is unrelated with the training process,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YU et al.: ONLINE VEHICLE ROUTING WITH NEURAL COMBINATORIAL OPTIMIZATION AND DEEP REINFORCEMENT LEARNING 11

Fig. 6. Sensitivity of parameters {Ci }7i=1.

Fig. 7. Sensitivity of parameter K .

we adopt the fine-tuned model used in previous case studies,
and assess the impact of K values on the proposed strategy
with various sampling configurations. Specifically, we set K ∈
{1.2, 1.5, 2.0, 2.5, 3.0, 4.0}, and the results are demonstrated
in Fig. 7. It can be generally concluded that K = 2 is the
best performing value for parameter K for the tested three
configurations of the proposed online routing strategy. Besides
this conclusion, there are also some other observations on the
characteristics of these configurations. Comparing with DRL-
sample@1k and DRL-sample@1min, DRL-sample@13k is
more robust to bad K values. While a large K results in
more flattened softmax probability in (5b), a small K leads to
concentrated samples in the distribution. Nonetheless, drawing
more samples from the distribution always has a higher
probability of selecting shorter tours. This conclusion can also
explain the other results in the figure, where DRL-sample@1k
is influenced the most by K since it construct the least number
of tours.

VI. CONCLUSIONS

In this work, we propose a new deep reinforcement learning-
based neural combinatorial optimization strategy to develop
vehicle routing plans with minimal computation time for
online transportation services in large networks, which is
difficult for conventional route generation algorithms. We take
AVLS as an example, and transform its online routing problem
into the neural optimization counterpart. To develop solutions
to the problem, we design a pointer network with struc-
tural graph embedding to construct vehicular tours iteratively.

Since parameter training is offline, the route generation incurs
minimal computation time, making the strategy promising
for online vehicle routing in large transportation networks.
Nonetheless, it is impractical to construct a supervised train-
ing data set for the neural network in the typical way by
explicitly solving the problem instances to optimal due to the
high computational complexity. As an alternative, we devise
a deep reinforcement learning mechanism to fine-tune the
neural network model parameters. To achieve this objective,
we employ an auxiliary critic neural network to estimate the
expected output of training data. Both the pointer network and
the critic network are trained using asynchronous advantage
actor-critic method. Lastly, we propose a multisampling tour
construction scheme to decode vehicular tours from the prob-
ability distribution output of the pointer network. This scheme
can effectively improve the system performance.

We conduct comprehensive case studies to evaluate the
performance of the proposed strategy using the transportation
network and dynamic traffic conditions in Cologne, Ger-
many. The simulation results show that the proposed strategy
can develop outstanding vehicular tours compared with con-
ventional mathematical programming-based strategies given
limited computation time, which is a dominating constraint
in online routing services. Additionally, the solution quality
improvement is further enhanced if the system is subjected
to changes such as new requests and updated renewable
generation output. We also analyze the impact of control
parameters on the system performance. The proposed strategy
can serve as a guideline of future related research on deep
learning-based routing problem.

The future work can go in two directions. On the one
hand, it is possible to employ other advanced deep neural
network and deep reinforcement learning techniques in the
proposed strategy to further improve the system performance.
On the other hand, the propose strategy is not limited to online
routing in green logistic systems. It is interesting to further
extend the strategy in solving other large-scale vehicle routing-
related or combinatorial optimization problems.

REFERENCES

[1] F.-Y. Wang, “Parallel control and management for intelligent transporta-
tion systems: Concepts, architectures, and applications,” IEEE Trans.
Intell. Transp. Syst., vol. 11, no. 3, pp. 630–638, Sep. 2010.

[2] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet Things J., vol. 1, no. 1,
pp. 22–32, Feb. 2014.

[3] A. A. Juan, C. A. Mendez, J. Faulin, J. de Armas, and S. E. Grasman,
“Electric vehicles in logistics and transportation: A survey on emerging
environmental, strategic, and operational challenges,” Energies, vol. 9,
no. 2, p. 86, 2016.

[4] G. Duarte, C. Rolim, and P. Baptista, “How battery electric vehicles
can contribute to sustainable urban logistics: A real-world application
in Lisbon, Portugal,” Sustain. Energy Technol. Assessments, vol. 15,
pp. 71–78, Jun. 2016.

[5] D. Mohr, H.-W. Kaas, P. Gao, D. Wee, and T. Müller, “Automotive
revolution: Perspective towards 2030: How the convergence of disruptive
technology-driven trends could transform the auto industry,” McKinsey
Company, New York, NY, USA, Tech. Rep., 2016.

[6] M. Joerss, J. Schröder, F. Neuhaus, C. Klink, and F. Mann, “Parcel
delivery—The future of last mile,” McKinsey Company, New York, NY,
USA, Tech. Rep., Sep. 2016.

[7] A. Simroth and H. Zahle, “Travel time prediction using floating car data
applied to logistics planning,” IEEE Trans. Intell. Transp. Syst., vol. 12,
no. 1, pp. 243–253, Mar. 2011.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[8] G. Kim, Y.-S. Ong, C. K. Heng, P. S. Tan, and N. A. Zhang, “City vehicle
routing problem (City VRP): A review,” IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 4, pp. 1654–1666, Aug. 2015.

[9] J. J. Q. Yu and A. Y. S. Lam, “Autonomous vehicle logistic system:
Joint routing and charging strategy,” IEEE Trans. Intell. Transp. Syst.,
vol. 19, no. 7, pp. 2175–2187, Jul. 2018.

[10] C. Lee, K. Lee, and S. Park, “Robust vehicle routing problem with
deadlines and travel time/demand uncertainty,” J. Oper. Res. Soc.,
vol. 63, no. 9, pp. 1294–1306, 2012.

[11] P. Jaillet, J. Qi, and M. Sim, “Routing optimization under uncertainty,”
Oper. Res., vol. 64, no. 1, pp. 186–200, 2016.

[12] A. E. Gegov, “Hierarchical dispatching control of urban traffic systems,”
Eur. J. Oper. Res., vol. 71, no. 2, pp. 235–246, 1993.

[13] S. Kim, M. E. Lewis, and C. C. White, “Optimal vehicle routing with
real-time traffic information,” IEEE Trans. Intell. Transp. Syst., vol. 6,
no. 2, pp. 178–188, Jun. 2005.

[14] M. Masikos, K. Demestichas, E. Adamopoulou, and M. Theologou,
“Machine-learning methodology for energy efficient routing,” IET Intell.
Transp. Syst., vol. 8, no. 3, pp. 255–265, May 2014.

[15] P. Nowakowski, K. Szwarc, and U. Boryczka, “Vehicle route planning in
e-waste mobile collection on demand supported by artificial intelligence
algorithms,” Transp. Res. D, Transp. Env., vol. 63, pp. 1–22, Aug. 2018.

[16] A. E. Gutierrez-Rodríguez, S. E. Conant-Pablos, J. C. Ortiz-Bayliss,
and H. Terashima-Marín, “Selecting meta-heuristics for solving vehicle
routing problems with time windows via meta-learning,” Expert Syst.
Appl., vol. 118, pp. 470–481, 2019.

[17] W. Shi, X. Xie, C.-C. Chu, and R. Gadh, “Distributed optimal energy
management in microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 3,
pp. 1137–1146, May 2015.

[18] J. J. Q. Yu, “Two-stage request scheduling for autonomous vehicle
logistic system,” IEEE Trans. Intell. Transp. Syst., to be published.

[19] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” in Proc. Int.
Conf. Learn. Represent., Toulon, France, Apr. 2017, Art. no. 09940.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, F. Bach,
Ed. Cambridge, MA, USA: MIT Press, 2016.

[21] J. J. Q. Yu, A. Y. S. Lam, D. J. Hill, Y. Hou, and V. O. K. Li, “Delay
aware power system synchrophasor recovery and prediction framework,”
IEEE Trans. Smart Grid, to be published.

[22] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc.
Adv. Neural Inf. Process. Syst., Montreal, QC, Canada, Dec. 2015,
pp. 2692–2700.

[23] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent
variable models for structured data,” in Proc. Int. Conf. Mach. learn.,
New York, NY, USA, Jun. 2016, pp. 2702–2711.

[24] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Proc. Adv. Neural
Inf. Proc. Syst., Long Beach, CA, USA, Dec. 2017, pp. 6348–6358.

[25] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[26] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proc. Int. Conf. Learn.
Represent., San Diego, CA, USA, Dec. 2015, pp. 0473–1409.

[27] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” in Machine Learning New York,
NY, USA: Springer, 1992, pp. 229–256.

[28] V. Mnih et al., “Asynchronous methods for deep reinforcement learn-
ing,” in Proc. Mach. Learn. Res., New York, NY, USA, Dec. 2016,
pp. 1928–1937.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Represent., San Diego, CA, USA,
Dec. 2015.

[30] (Dec. 2017). OpenStreetMap. [Online]. Available: http://www.
openstreetmap.org/

[31] G. Boeing, “OSMnx: New methods for acquiring, constructing, ana-
lyzing, and visualizing complex street networks,” Comput. Env. Urban
Syst., vol. 65, pp. 126–139, Sep. 2017.

[32] S. Uppoor, O. Trullols-Cruces, M. Fiore, and J. M. Barcelo-Ordinas,
“Generation and analysis of a large-scale urban vehicular mobility
dataset,” IEEE Trans. Mobile Comput., vol. 13, no. 5, pp. 1061–1075,
May 2014.

[33] (Dec. 2017). Nissan LEAF Electric Car. [Online]. Available:
https://www.nissanusa.com/electric-cars/leaf/

[34] (Dec. 2017). Model S—Tesla. [Online]. Available: https://www.
tesla.com/models

[35] (Dec. 2017). Model X—Tesla. [Online]. Available: https://www.
tesla.com/modelx

[36] C. De Cauwer, J. Van Mierlo, and T. Coosemans, “Energy consumption
prediction for electric vehicles based on real-world data,” Energies,
vol. 8, no. 8, pp. 8573–8593, Aug. 2015.

[37] (Dec. 2017). Eastern and Western Data Sets—Grid Modernization—
NREL. [Online]. Available: https://www.nrel.gov/grid/eastern-western-
wind-data.html

[38] K. Strunz, E. Abbasi, and D. N. Huu, “DC microgrid for wind and solar
power integration,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2,
no. 1, pp. 115–126, Mar. 2014.

[39] (Dec. 2017). Gurobi optimization—The State-of-the-Art Mathematical
Programming Solver. [Online]. Available: http://www.gurobi.com/

[40] Y. Qi, Z. Hou, H. Li, J. Huang, and X. Li, “A decomposition based
memetic algorithm for multi-objective vehicle routing problem with time
windows,” Comput. Oper. Res., vol. 62, pp. 61–77, Oct. 2015.

James J. Q. Yu (S’11–M’15) received the B.Eng.
and Ph.D. degrees in electrical and electronic
engineering from The University of Hong Kong,
Hong Kong, in 2011 and 2015, respectively. From
2015 to 2018, he was a Post-Doctoral Fellow at
The University of Hong Kong. He is currently an
Assistant Professor with the Department of Com-
puter Science and Engineering, Southern University
of Science and Technology, Shenzhen, China, and an
honorary Assistant Professor with the Department of
Electrical and Electronic Engineering, The Univer-

sity of Hong Kong. He is also the Chief Research Consultant of GWGrid Inc.,
Zhuhai, and Fano Labs, Hong Kong. His research interests include smart city
and urban computing, deep learning, intelligent transportation systems, and
smart energy systems. He is an Associate Editor of the IET Smart Cities
Journal.

Wen Yu (M’97–SM’04) received the B.S. degree
from Tsinghua University, Beijing, China, in 1990,
and the M.S. and Ph.D. degrees (both in elec-
trical engineering) from Northeastern University,
Shenyang, China, in 1992 and 1995, respectively.
Since 1996, he has been with the National Poly-
technic Institute (CINVESTAV-IPN), Mexico City,
Mexico, where he is currently a Professor and the
Department Chair of the Automatic Control Depart-
ment. From 2002 to 2003, he held research position
at the Mexican Institute of Petroleum. He was a

Senior Visiting Research Fellow of Queen’s University Belfast, Belfast, U.K.,
from 2006 to 2007, and a Visiting Associate Professor with the University of
California, Santa Cruz, CA, USA, from 2009 to 2010. He has published over
100 research papers in reputed journals. His Google Scholar h-index is 37,
and the number of citations is 5 100. He serves as an Associate Editor for
the IEEE TRANSACTIONS ON CYBERNETICS, NEUROCOMPUTING, and the
JOURNAL OF INTELLIGENT AND FUZZY SYSTEMS. He is a member of the
Mexican Academy of Sciences.

Jiatao Gu received the B.Eng. degree from
Tsinghua University in 2014. He is currently
pursuing the Ph.D. degree in electrical and elec-
tronic engineering with The Hong Kong Univer-
sity. He joined the Facebook Artificial Intelligence
Research in 2018. He was a Research Intern at Sales-
force Research, Microsoft Research, and a Visiting
Student at New York University. His research inter-
ests include natural language processing and deep
learning, especially on neural machine translation.
He has published papers in top computer science

conferences, e.g., ACL, EMNLP, NAACL, EACL, AAAI, and ICLR.

