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Abstract— With the rapid development of online ride-hailing
services, people have increasingly relied on platforms providing
these services to travel. The corresponding companies need to
accurately obtain passengers’ travel demand to allocate orders
and drivers to regions. Therefore, traffic demand prediction is
a critical problem of Intelligent Transportation Systems (ITS).
Origin-Destination Matrix Prediction (ODMP) is a challenging
extension of traffic demand prediction that needs to consider
the temporal and spatial dependence of traffic data and predict
the relationship between origin and destination of passengers’
demand. In this paper, we proposed a method to convert order
paths of passenger demand to the hexagon-based path graph.
The path graph shows the origin and the destination of the
paths of a period. Specifically, considering that traffic flows
are time-varying, we generate different hexagon-based path
graphs for different time periods. Then, we propose a Hexagon-
based Dynamic-Graph Convolutional Network (Hex D-GCN)
to make the GCN suitable for dynamic graphs, in which
graph connections are different in time series. Furthermore,
We evaluate our model on the Didi Chuxing KDD CUP 2020
dataset and get the state-of-art performance. It is shown that
our method combines the spatial correlation and temporal
correlation well and also captures the passenger’s demand
pattern.

I. INTRODUCTION

In the past few years, with the increase in demand for
taxi travel and information communication technology devel-
opment, emerging online ride-hailing services have become
increasingly convenient for urban travel. Online car-hailing
companies, such as Didi Chuxing and Uber, greatly satisfy
people’s travel needs. In this context, to better dispatch
online ride-hailing drivers and understand passengers’ travel
needs, using historical data for order demand forecasting is
a beneficial method for these companies. The order demand
analysis can lead to proper resource allocations (i.e., avoid
unnecessary empty drives) and find the optimal paths to
maximize profit. The distribution of origin and destination
can be obtained from the historical order demand data in
the transportation field. The main method used to describe
a traveling demand is the origin-destination (OD) matrix,
representing the travel demand from point A to point B in a
specific time period. Understanding the origin and destina-
tion of passenger travel can well describe the distribution of
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travel demand, which represents the traffic flow patterns in
the city.

The origin-destination matrix can well reflect the direct
relationship between the origin and destination and further
explain passengers’ specific needs in different areas. Based
on the ride-hailing company’s massive data, the origin-
destination matrix is becoming predictable. In this paper, we
apply the and periodic historical data of passenger’s demand
pattern to predict the passenger demand at a particular time
in the future, which is defined as Origin-Destination Matrix
Prediction (ODMP) problem.

Traditional traffic forecasting methods focus more on the
temporal features of OD data, e.g., autoregressive integrated
moving average (ARIMA) [1], support vector regression
machine (SVM) [2], and the Bayesian model [3]. But these
models lack attention on the spatial semantic relationship
feature of the map data. Thus, the researchers introduced
the convolutional neural networks (CNN) to the traffic fore-
casting tasks to consider the spatial feature [4]. However,
due to convolution computation’s structural characteristics,
CNN is best suitable for processing data in Euclidean space,
such as images and videos. More methods came out with the
development of related deep learning models, such as graph
convolutional networks (GCN). All the traffic prediction
tasks are based on the geographic information map [5]. This
kind of map is Euclidean data, but the traffic flow and the
real-world paths are the natural non-Euclidean data, which
are suitable for being processed by GCN. Moreover, time-
series data is also natural in the real world. To handle this
kind of data, researchers adopted recurrent neural networks
(RNN). Traffic data have a time-series relationship, i.e., the
previous state determines the current traffic state. RNN can
extract the traffic data temporal characteristics effectively.

In terms of ODMP, researchers need to consider the traffic
order demand data’s both temporal and spatial correlations.
Some researchers partition the map into square areas [6],
and other researchers partition the map according to the
administrative areas [7] to mark the origin and destination of
the orders’ paths to show the spatial feature. And splitting
the time-series data into several time slots to show the tem-
poral feature. However, as traditional graph neural network
techniques require the graph nodes’ spatial characteristics to
be fixed, they cannot be directly implemented on dynamic
graph structure data; however, the traffic flow changes in
real-time and is time-correlated. For ODMP, the number of
orders and path distribution in each time state is different,
and the orders’ paths have different origins and destinations
in each period. When the paths abstract to the graph data



structure, the nodes’ connections in the graph of different
time periods need to be updated. Thus, dynamic input of
traffic demand graph data is vital for the prediction.

To address the above problems, we propose a method to
partition the map into hexagonal regions and then generate
the graph structure data according to the orders’ paths in each
time period. The hexagon is one of three regular polygons
that can tile the Euclidean space. Compared with triangles
and squares, hexagons have an unambiguous neighborhood
definition, smaller edge-to-area ratio, and multiple isotropic
properties [8]. Each single regular hexagon has six equivalent
regular hexagons, so this representation has better connectiv-
ity than others, potentially revealing more data correlation.
In this paper, each hexagonal grid represents the vertex of
the hexagon-based graph, which are generated by the orders’
paths in a time slot. In this way, the graph data and temporal
relationship can be better used for modeling. Inspired by T-
GCN [9], we propose the Hexagon-based Dynamic-Graph
Convolutional Network (Hex D-GCN) model for ODMP
problem, which uses the hexagon-based dynamic graph to
update the adjacent to improve the prediction performance
of the model.

Our main contribution can be summarized as follows:

o Unlike existing methods for OD prediction, we divide
the map space into hexagonal grids instead of square
grids. Based on the hexagonal grid map, we convert
the traffic demand orders’ path of a time period to
the hexagon-based graph path. Additionally, we use
the graph path to generate the adjacent matrix, the
in-degree, out-degree feature matrix, and the origin-
destination matrix as the input.

e We propose a Dynamic-GCN model to address the
ODMP problem. For the ODMP problem, different
time slots have different hexagonal grids graphs, which
means that the graph is in changing real-time. We refer
to the GraphSAGE [10] model to improve the GCN
effects for the real-time changing graph.

e The Hex D-GCN achieve great performance on the
Didi Chuxing KDD CUP 2020 dataset. In addition, this
method has good universality in analyzing traffic flow
patterns and capturing the passenger’s demand pattern.

The rest of our paper is organized as follows. Section
IT reviews the literature on the traffic prediction model
and ODMP problem. Section III defines the abstract map
method and give the definition of the origin-destination
matrix prediction problem. Section IV presents the network
framework from spatial dependence perspective and temporal
dependence perspective. Section V discusses the results
of our approach and compares them with other methods.
Finally, concluding remarks are given in Section VI.

II. RELATED WORK

A. Traffic Demand Prediction

The prediction of the passenger demand and traffic con-
ditions from diverse areas and periods can contribute to
taxi companies’ operational strategy design. In previous OD

prediction literature, the researchers pay more attention to
the traffic demand prediction. Traditional time-series models
are adopted to solve this problem, e.g., ARIMA [1], Kalman
filter [11], and their variants. However, these models often
lack the ability to capture non-linear temporal and spatial
correlations in data for prediction.

With the improvement of computing efficiency, machine
learning methods are getting increasingly prevalent in de-
mand prediction tasks. RNN [12] and long short-term mem-
ory model (LSTM) [13] are good at capturing the temporal
feature of the data. This kind of model looks for the time-
series relationship of the data to make predictions but ignores
the spatial characteristics. The convolutional neural network
(CNN) can capture the data’s spatial feature and combine it
with LSTM or RNN to capture the temporal feature [8], [14].
For instance, [8] used the hexagonal-based CNN to capture
the spatial feature and proposed the SRCN to predict the
short-term and long-term traffic flow. These models always
have too many model parameters and not concise enough.

For the OD prediction task, how to divide the map to
generate input data is a critical problem. Some researchers
divide the space into square grids [7]. This segmentation is
natural for CNN to perform convolution operations. Other
researchers use the administrative planning areas [6] for the
OD prediction task. This segmentation has good semantic
meaning, but it is not in the regular areas, which is not
suitable for the OD matrix. The administrative planning
areas are always the big areas that are not proper to make
fine-grained predictions. As for the hexagon grids, some
researchers proposed the hexagon convolution method [8],
but this method is not universal to the normal data. In the
ODMP problem, the paths in every period can compose of
the natural graph structure data. We proposed a universal
method to abstract the paths of a period to the hexagon-
based path graph in Section IIL

B. Graph Convolutional Network

Data are often sampled in non-Euclidean spaces (e.g.,
graphs) [15]. Compared to the CNN that captures the
Euclidean data feature, [16] proposed the GCN to deal
with graph data such as social networks and protein-protein
connection networks. The traffic network is the natural graph
data structure, and many researchers introduce GCN to the
traffic prediction task [4], [9], [17]. For example, STGCN
[17] models the traffic network as the graph, and adopts
GCN and RNN to capture the latent spatial and temporal
dependence respectively for traffic forecasting. This kind of
model always fixes the adjacent matrix of GCN without
considering the dynamic change of the paths; however, the
graph dynamic change of the paths brings the update of the
adjacent matrix. In this paper, we introduce the dynamic
adjacent matrix to GCN to improve the performance of the
ODMP.



Fig. 1.
(red path). The right figure shows the hexagon-based polyline order path
(blue path).

The left figure shows the hexagon-based map and one order path

III. PRELIMINARIES
A. Abstract Map

We first discuss the abstraction of the 2D Euclidean
space map to non-Euclidean graph structure data. Previous
researchers primarily partition the city map into multiple
square cells. This method is easy for CNN to capture the
spatial correlation, and grids can be easily converted to
the input matrix of CNN just as typical Euclidean space
data. Despite this, we partition the city map into regular
hexagons. Hexagon segmentation has the tessellation prop-
erty of planes. Compared with the square grids segmentation,
the hexagon segmentation has an unambiguous neighborhood
definition, smaller edge-to-area ratio, and multiple isotropic
properties [8]. This representation has better connectivity
than squares and triangles because every single regular
hexagon has six equivalent neighbor regular hexagons. So
hexagon segmentation can easily capture the traffic flow
feature among different hexagon areas. Compared with the
circle space segmentation, hexagons can split the space
without overlapping area while reducing the computational
complexity.

In our method, we split the city map domain into
the hexagon grids X = {Hi,Hs,---,H,}. The order
path OP = {opi,0ops,---,0pr} can be converted into
the polyline path based on the hexagonal map HP =
{hp1,hpa,-- -, hpy}. This kind of path go through hexagon
grid from H; — Hj;. Fig. 1. shows part of a origin path of
Chengdu, China, and the hexagon-based path of an order. A
part of the op; from H, — Hg converted into the connecting-
line of the center points of two regular hexagons H, and Hg.

We abstract the normal traffic path of the demand map by
the above method. Hexagon-based polyline paths in a time
period can be generated as a graph of non-Euclidean paths,
which will be introduced in Section IV-A.

B. Origin-Destination Matrix Prediction Problem

With the development of the riding source of the online
platform, researchers can have enough data to predict the
origin-destination distribution of passengers’ demands by
ODMP. In this part, we give the definition of ODMP.

Definition 3.1. Time Slot: We divide a time period into
multiple time fragments evenly, and each fragment becomes
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Fig. 2. The process of converting the orders’ path to the graph path based
on the hexagonal map in one time slot Slot;. The adjacent matrix A, the
in-degree, out-degree feature matrix X¢, and the Origin-Destination matrix
ODy can be abstracted from the graph path map.

one time slot, represented as {Sloty,Slots,---,Slot:}.
Meanwhile, there is no overlap between neighboring time
slots.

Definition 3.2. Origin-Destination Matrix: For every or-
der, there is a origin hexagon cell and a destination hexagon
cell of the path. In each time slot, the total number of orders
from H; — H; can be denoted as m,;;. For the whole city
hexagonal-based map, the OD matrix can be represented
as M € NHXH where m,; € M denotes the number of
demands from H; to Hj;.

Definition 3.3. Origin-Destination Matrix Prediction : For
t time slots, we input a sequence of prior observed OD matrix
My, Ms, - - -, M, and a prior information feature X, e.g., the
input-output degree of one hexagon grid, to predict the OD
matrix Myyq in Sloti4q.

IV. METHODOLOGY
A. Spatial Dependence Modeling

In traffic prediction problems, the spatial relationship
between the road and area is the key that needs to be
considered. In Section III-A, we partition the city map into
hexagon grids and convert the order paths into polygonal
paths based on the hexagon-based map. There are n order
paths {op1,0pa,---,0p,} in time slot ¢, and the multiple
paths can compose a complete paths map G;. Every path in
G can be converted to the hexagon-based polygonal path
and then compose the new hexagon-based graph HG; in
time slot ¢.

The hexagon-based graph HG; of time ¢ is the natural
graph structure. Traditional CNN is efficient in obtaining the
features in Euclidean space data such as images. But for non-
Euclidean space data, GCN is more suitable to capture the
feature. It is easier to get the relationship between nodes
in the graph or the regional relevance of areas of traffic
prediction tasks.

In the traffic prediction graph-based model, researchers
need to capture the temporal and spatial features of the traffic
data. Inspired by T-GCN [9], our model has two parts, the
Dynamic-GCN part for capturing the spatial feature and the
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Fig. 3. The distribution of order quantity in time (above) shows that the
distribution of orders on weekends and weekdays is different. The spatial
distribution of order is shown in heatmaps (below). The below-left heatmap
is the order distribution is from 0:00 to 1:00 at midnight on November 7th,
and the below-right heatmap is from 16:00 to 17:00 on November 7th.

GRU part for capturing the temporal feature. The normalized
adjacent matrix A and the nodes’ feature matrix X are the
input of the GCN model. Specifically, the A is the adjacent
matrix calculated by A = D=2 (A+ I)D~2 [16], where the
D is the degree matrix of A+ I, D = >i;(A+1);;. Each
layer of the GCN can be expressed as:

F(XW,A) = o(AXOWD) (1)

In the previous GCN-based approaches of the traffic
demand prediction task, the graph of the paths is based
on the fixed areas. The nodes’ connection in the graph is
regarded as fixed, and thus the adjacent matrix is fixed. For
our graph-generated method, in every time slot Slot;, we
can abstract the single adjacent matrix A;, which nodes’
connection update by changing the orders’ paths. That means
our input graph is dynamic updating for the model. Besides
the matrix A;, the feature X, of the graph is defined as
the in-degree and the out-degree for one node. Besides, we
can get the OD matrix M; in each time slot. The process
illustrates in Fig. 2.

GraphSAGE [10] is a method to process large graphs
data. The fundamental idea of the method is to aggregate
the neighbor nodes’ information to the center nodes. In this
method, the graph can dynamic updates such as adding nodes
or reducing nodes or change the connection relationship
between nodes. In GCN approaches, the element-wise mul-
tiplication with one row 4 of the A; and one column of the
X, to get the aggregation in the dimension j of the node <.
This operation can be regarded as the aggregation operation
in GraphSAGE. As in [10], the researchers proposed that
the mean-aggregator method is similar to the GCN. For our
method, the nodes’ update means the connection between
nodes in the graph needs to be updated, and the number of
the nodes in the graph does not change. Thus, we only need
to update the adjacent matrix A; with the time change.

To predict the OD matrix, we introduce the transition
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Fig. 4. Hexagon-based Dynamic-GCN model.

matrix Wy, with orthogonal initialization as the parameter
in the first layer of the model (Eq. 2a). The complete two-
layer Dynamic-GCN is defined as Eq. 2b,

(AL X, W) = o(D72 (A + DD~ X Wy,),
fo(A, 1) = o(AfLWy),

where o is the linear function and fy(A, f1) is the output
result of the current GCN Block.

(2a)
(2b)

B. Temporal Dependence Modeling

Traffic prediction has a strong time dependence. With
the progress of time, taxi orders OD also has periodic
changes. The distribution of taxi OD varies at different times
of weekends and weekdays. Also, the OD distribution at
midnight and in the rush hour is different (Fig. 3). How
to capture the temporal feature is the key problem in traffic
prediction. RNN [18] is a widely recognized deep learning
model to deal with the sequence problem. However, too
many parameters may cause the gradient explosion issue, and
RNN cannot store long-term memory information well, and
long-term memory will be overridden by short-term memory.
LSTM [19] and GRU [20] can circumvent these problems.
LSTM uses a gated mechanism to avoid gradient explosion
and uses a cell state to store long-term memory. Then, it
cooperates with the gate mechanism to filter information to
achieve control of long-term memory information. Compared
with LSTM, GRU has similar performance and has fewer
parameters which are easier to train [21] and converge faster.
Hence, we followed T-GCN [9] to chose GRU as our model
to capture the temporal feature of the OD traffic data.

For ODMP problem, by inputing a time series {x;}._; to
the GRU cell, GRU encode the {x;}1_; to the hidden state
{h}L | via hy = g(xs,hi_1), where the g(-) is the non-
linear mapping function of GRU. Certain expression can be
defined as below equations,

re = o (W, [f(At, Xe, W), he—1] + by) 3)

up = o(Wu[f(At, Xo, Wer), hi—1] + bu) “)

cr = tanh(We[f (A, X, Wer), (re x by—1)] +bc)  (S)
hy =upxhi—1 + (1 —up) x ¢ (6)

where 7, and wu, is the reset gate and the update gate, c; is
the new input state. TV is the weight, and b is the bias. f(-)
is the Dynamic-GCN block output, and h; is the output of
the GRU cell.



Besides the GRU model, the dynamically updating adja-
cent matrices A; also have the temporal relevance property.
The change of A; depends on the passengers’ demand in
different time slots Slot, as time goes by.

To conclude, we introduce a method to generate the
passengers’ demand traffic map’s dynamic graph based on
the hexagon segmentation. We propose a Hexagon-based
Dynamic-GCN model to predict the passengers’ origin-
destination matrix with the combination of spatial and tem-
poral features. The model is illustrated in Fig. 4.

C. Loss function

Our training goal is to minimize the error between the
predicted output OD matrix M,;;; and the ground truth OD
matrix Mt+1 in time slot Slot; ;. We apply the same loss
function as the T-GCN [9] as Equation 7. The first item is
the L2 loss function and the second item is the regularization
item as the L2-norm.

ZOSS = “Mt+1 - Mt+1H + )\Lreg (7)

V. EXPERIMENTS

A. Dataset Pre-processing and Evaluation Method

In our experiments, we select the Didi Chuxing KDD CUP
2020 dataset (https://gaia.didichuxing.com) to
evaluate the ODMP task. This dataset comes from the
trajectory and order data of the Didi ride-sharing platform
in a local area of Chengdu, China. The order data include
the empty car transfer rate, order cancellation probability,
and hexagonal grid coordinates data. The sampling interval
of trajectory points is 2—4s. The period of this dataset is from
Ist to 30th in November 2016.

We focus on the trajectory data of each order and
hexagonal grid coordinates data in the dataset. All order
routes are located within [30°65294' N, 104°04215'E] and
[30°72775' N, 104°12958' E|. We further remove noisy data
such as too-short trajectories whose number of trajectory
points is less than 50 and drifting paths whose trajectory
points are off the road. We set the time slot interval to 1
hour to split the dataset and using the OD matrix of 5 time
slots to predict the next 1 hour OD matrix, which follows
[7].

We adopt the root mean square error (RMSE) and sym-
metric mean absolute percentage error (SMAPE) to show the
prediction accuracy:

RMSE = |Mf+1|xNZH o MﬁHH )

MAPE =
s |Mt+1\><NZ > m+m+1 ©)

n=1meMp,

TABLE I
RESULTS ON DEMAND PREDICTION OF DIFFERENT METHODS.

HA

Metrics . GCRN | LSTM | GEML | Ours
(Baseline)
avsE | 28382 | 41512 | 120007 | 16928 | L0749
- 463% | -322.9% | +403% | +62.1%
06190 | 03842 | 05121 | 02678 | 0.2660
SMAPE ; +380% | +17.4% | +56.8% | +57.1%

B. Experimental Setup

To test the model performance on the Didi dataset, we
divide the whole dataset into the training dataset, validation
dataset, and test dataset. There are no national holidays in
November 2016, so we don’t need to exclude specific dates.
The data from November Ist to November 20th are used
as the training set, and the data from November 21st to
November 25th as the validation set, while the last five days
as the test set. In ODMP, researchers typically set all the
entries smaller than three to zeros in OD matrices to reduce
the influence of data noise [14], which can prevent taxis from
appearing at irregular locations and times to interfere with
the model. We follow this paradigm to pre-process the raw
data.

Our model’s hyperparameters are set as follows. We use
the Adam optimizer to optimize training, and the learning
rate is 0.001, the batch size is 5, the training epoch is
1000. Empirically, we use 100 GRU hidden units to train
our model. The experiments are executed on the server with
Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz CPU and
2080Ti GPU. And the reported values of RMSE and SMAPE
are the averaged value of five times running results.

C. Experiments Results

1) OD Matrix Prediction Accuracy: In our experiments,
the History Average (HA) of data is set as the base-
line. Besides, we employ the classical temporal learning
model LSTM, a temporal and graph data learning model
GCRN [22], and the grid-embedding-based multi-task learn-
ing (GEML) [7] which considers the prior information and
geographical semantic information for comparison.

From Table I, we can develop the following observations.
The HA as the baseline has the stable performance of
RMSE and SMAPE, and sometimes even better than the
proposed models. We calculated the relative performance
improvements (or degradation) of other methods based on
the baseline HA. LSTM model only considers the temporal
features of the traffic data and does not care about the data’s
spatial feature. RMSE of LSTM gets the worst performance
among the models. Therefore, the model which only cares
about the time-series feature is not suitable for the ODMP
problem. And for the GCRN model, this model cares about
the data’s temporal and spatial correlations. This method has
better performance on SMAPE than the baseline. GEML is
a specific model for the ODMP task. This model divides the
map into square grids to do embedding and do multi-task
learning to predict the OD matrix. This model considers tem-
poral and spatial features and gets satisfactory performance.
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Fig. 5. The ground truth and the prediction result of different time slots,
and the relative prediction error between them.

Our method, Hexagon-based Dynamic-GCN, generates the
state-of-the-art performance on the Didi Chuxing KDD CUP
2020 dataset and gets 1.0749 RMSE and 0.2660 SMAPE,
which has a massive improvement from previous models.

2) OD Matrix Prediction Visualization: RMSE and
SMAPE are the evaluation index of the model used to
compare the prediction result of the different models. But
they cannot show the prediction result directly. To see our
prediction results intuitively, we choose two time slots, 16:00
on November 26th and 6:00 AM on November 26th, to
show the predicted OD matrix and ground truth OD matrix.
However, since the intensity and peak values of the ground
truth and prediction results are concentrated in fixed areas, it
isn’t easy to compare them directly. So we also illustrate the
relative prediction error distribution in Fig. 5. Intuitively, for
the relative prediction error in Figs. 5 (c) and (f), the depth
of color is different. That means for the different time slots,
the prediction errors are different. Also, the OD demands are
very imbalanced in different areas and different time periods.
Since the prediction’s intensity is similar to the ground truth,
our model effectively captures the human mobility patterns’
feature to make the prediction.

VI. CONCLUSION

In this paper, we propose a Hexagon-based Dynamic-GCN
model to address the Origin-Destination Matrix Prediction
(ODMP) problem. The OD matrix can show the traffic
demand data’s temporal and spatial features and show the
passengers’ travel patterns. But previous methods cannot
consider the temporal and spatial features well. Different
from the previous efforts, we divide the map into hexagon
grids and propose a novel method to convert the Euclidean
data of the paths of order demand graph to the hexagon-based
graph data. Furthermore, considering that traffic flow is real-
time changing, we improve the proposed GCN-based model
to adapt to dynamic traffic graphs. To test the performance
of Hexagon-based Dynamic-GCN, we evaluate our model
on the Didi Chuxing KDD CUP 2020 dataset. The proposed
model develops the state-of-the-art performance of ODMP
on the dataset.
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