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Real-Time Traffic Speed Estimation With Graph
Convolutional Generative Autoencoder

James Jian Qiao Yu

Abstract— Real-time traffic speed estimation is an essential
component of intelligent transportation system (ITS) technolo-
gies. It is the foundation of modern transportation control and
management applications. However, the existing traffic speed
acquisition systems can only provide real-time speed measure-
ments of a small number of roads with stationary speed sensors
and crowdsourcing vehicles. How to utilize this information
to provide traffic speed maps for transportation networks is
becoming a key problem in ITSs. In this paper, we present
a novel deep-learning model called graph convolutional gener-
ative autoencoder to fully address the real-time traffic speed
estimation problem. The proposed model incorporates the recent
development in deep-learning techniques to extract the spatial
correlation of the transportation network from the input incom-
plete historical data. To evaluate the proposed speed estimation
technique, we conduct comprehensive case studies on a real-world
transportation network and vehicular traces. The simulation
results demonstrate that the proposed technique can notably
outperform existing traffic speed estimation and deep-learning
techniques. In addition, the impact of dataset properties and
control parameters is investigated.

Index Terms— Traffic estimation, deep learning, generative
adversarial network, graph convolutional network, data-driven
model.

I. INTRODUCTION

NTELLIGENT transportation system (ITS) is among the

most important components in future smart cities. Con-
tributed by the advanced sensing, communication, and com-
putation techniques, ITS is expected to greatly improve the
efficiency of general traffic [1]—[3]. In recent years, the trans-
portation industry and research community have witnessed
a plethora of effort on how to optimally control the traf-
fic and operate vehicles to achieve various social objec-
tives, e.g., reduce greenhouse gas emission [4]-[6] and traffic
congestion [7], [8]. In order to have a better knowledge and
control on the traffic, these ITS applications rely heavily
on the real-time traffic speed of each road in transportation
networks [9]-[12]. For instance, real-time route planning ser-
vice employs the traffic speed to guide vehicles to avoid
congested roads, which in turn reduces both the driving time
and the pollutant emission [3].

Manuscript received May 26, 2018; revised December 16, 2018 and
April 2, 2019; accepted April 8, 2019. The Associate Editor for this paper
was Y. Lv. (Corresponding author: James Jian Qiao Yu.)

J. J. Q. Yu is with the Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
(e-mail: yujq3 @sustech.edu.cn).

J. Gu is with the Department of Electrical and Electronic Engineering, The
University of Hong Kong, Hong Kong.

Digital Object Identifier 10.1109/TITS.2019.2910560

, Member, IEEE, and Jiatao Gu

Existing industrial solutions to provide real-time traffic
speed estimations of the transportation network mainly involve
stationary speed sensors and vehicular global positioning
system (GPS) records. Take Google Maps as an example.
The service provider gathers massive real-time vehicular GPS
records containing the position and driving speed of crowd-
sourcing vehicles [13]. These data are then aggregated to
construct a traffic speed map, which is shown in Google
Maps and is employed to provide real-time routing service.
Nonetheless, this model requires a huge volume of information
from crowdsourcing drivers, which is unavailable for most
other services. Furthermore, since the records are typically
labeled by driver identifiers, user information privacy may be
infringed. It is also highly possible that roads in rural areas
cannot be consistently covered by crowdsourcing vehicles,
rendering incomplete speed data.

Due to the importance of real-time traffic speed in trans-
portation system applications, much research effort has been
made to devise algorithms for providing real-time traffic
speed with limited measurements, which is practical as a
general-purpose solution. A wide variety of methods have
been employed to address this real-time traffic speed esti-
mation problem (sometimes called traffic data imputation
problem [9]). These methods can be classified into at least
two main categories, namely, black-box statistical meth-
ods (e.g., [9], [14], [15]) and traffic-model-based methods
(e.g., [16]-[18]). Both class of methods have their own merits,
and transportation system applications require the right meth-
ods. For instance, statistical approaches are generally more
robust to noise and perturbations, and are thus better for traffic
estimation and prediction in which under-determinacy is not
a significant problem. Meanwhile, model-based approaches
can be better adopted in what-if reasoning, decision impact
assessments and network dynamics research, etc. A wide
variety of methods have been employed to address this
real-time traffic speed estimation problem (also called traf-
fic data imputation problem [9]). Additionally, many results
are published on developing predictions of traffic flow data,
e.g., [19]. These methods can also help design traffic speed
estimation approaches.

However, there exists a research gap in the real-time traffic
speed estimation problem, especially when developing the
speed for each road in a large area, i.e., traffic speed map.
Most existing methods estimate the speed for an arbitrary
road solely by learning the complete or partial historical
measurements, see [9], [14] for examples. Such methods do
not utilize the spatial correlations among real-time traffic
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speeds of adjacent roads, which can potentially help improve
the estimation accuracy. In addition, these models typically
can only address one or few roads at one time. This means
that traffic speed maps can only be constructed by executing
the estimation algorithms independently for each road, which
can be highly computationally inefficient. Furthermore, exist-
ing work relies heavily on stationary speed sensor records
on a same road, rendering mobile vehicular GPS records
underutilized. Very recent work on traffic speed prediction
(e.g., [20]) extracts the spatial correlation characteristics of
transportation networks by adopting the convolution idea.
Nonetheless, the proposed diffusion-based approach cannot
be employed to handle vehicular GPS records, which lead
to intermittent speed measurements for arbitrary roads. Thus
the technique still suffers from the same data under-utilization
issue in traffic speed estimation problem.

To bridge the research gap, in this work we propose a new
deep neural network architecture called graph convolutional
generative autoencoder (GCGA) to address the real-time speed
estimation problem in modern cities. We specifically consider
practical scenarios in which a small number of crowdsourc-
ing vehicles provide their real-time GPS records for speed
estimation over a large region. Different from existing work,
the proposed model can extract the graph-related spatial
characteristics of transportation networks to develop traffic
speed maps at one time. In addition, this model can relax
the dependency on stationary speed sensors and fully utilize
the dynamic, independent, and incomplete vehicular GPS
records. In this architecture, we adopt the graph convolution
concept from graph convolutional network (GCN) [21] for
feature extraction. In addition, we formulate the network as
a variant of generative adversarial network (GAN) [22] to
generate traffic speed maps. Contributed by the superior data
generation capability of the generative model [23], i.e., GAN
in this work, the proposed model can develop more accurate
and robust speed maps compared with typical deep learning
models. As far as we are concerned, this is the pioneer work on
real-time traffic speed map generation with rare measurements.

The main contributions of this work are summarized below:

« We propose a novel GCGA as a general-purpose feature-
generating methodology for graphs. We adopt the design
principle of GCN and GAN to formulate the architecture
of GCGA, and a practical training method is proposed.

« We employ GCGA to address the real-time traffic speed
estimation problem. We analyze the properties of the
problem and discuss the implementation details of the
GCGA-based speed estimation approach.

o We develop a tailor-made mechanism to boost the training
speed of the proposed system. The mechanism signif-
icantly reduces the training time while maintains the
system performance.

The rest of this paper is organized as follows. In Section II,
we first give the mathematical formulation of the investigated
traffic speed estimation problem, and discuss the recent related
literature. We formulate the proposed GCGA and discuss its
application in addressing the traffic speed estimation problem
in Section III. Section IV presents the results and discussions
of the case studies, and this paper is concluded in Section V.
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TABLE I
DEFINED SYMBOLS IN THE SYSTEM MODEL

Definition

G | Transportation network.

N | Set of road intersections in G.
E Set of roads in G.
T

S

Set of time slots in the past and present.
Set of roads equipped with stationary speed sensors.
P | Additional road network information.

Ve,t Ground truth traffic speed of road e at time ¢.
fr(e) | Starting node of road e.
to(e) | Ending node of road e.

De,t Estimated traffic speed of road e at time ¢.

C: | Roads traversed by crowdsourcing vehicles at time ¢.
5t+ Roads whose traffic speeds are observed by the system
operator at time ¢.

V;~ | Observed speeds of roads in &; at time ¢.

Vi Estimated speeds of all roads in £ at time t¢.

II. TRAFFIC SPEED ESTIMATION PROBLEM

In this section, we define the traffic speed estimation
problem. The objective and input data are formalized with
mathematical models, and related work is discussed.

A. System Model

The symbols defined in this section are summarized
in Table I. We first model the investigated road network as a
directed graph G(NV, £), where N is the set of road intersec-
tions (vertices in the graph), and £ is the set of roads (edges).
Given a transportation network, the corresponding graph G can
be constructed in a two-step process. We first extract all road
intersections in the network and create corresponding nodes
in the graph. Then each road is included in the network by
creating an edge from its starting node to its ending one. Let
fr(e) € N and to(e) € N be the starting and ending nodes
of a road e € £. Considering infinite discrete time slots in
the past and present 7 = {---, —2,—1,0} where O stands
for the current one, the average traffic flow speed of a road
e € & at time ¢t € T is denoted by v, . Additionally, roads in
the network have their own properties, e.g., speed limits and
numbers of nearby point of interest, denoted by P. Among
all roads in the network, the system operator can only observe
the traffic speed of some of them, which are denoted by &'.
We further use set V;' to stand for the observed traffic speed
of each e € &'

In this road network, the traffic speed of each road can
be observed from two sources: crowdsourced vehicular GPS
records and optional stationary speed sensors. Let S be the
set of roads equipped with speed sensors, and C; be the set of
roads on which vehicles traverse and report their GPS records
to the system operator at t. Consequently, we have 8,+ =
SUC, Vt € T, which may change for different ¢ values with
vehicles traversing the transportation network.

The objective of the traffic speed estimation problem is to
employ a traffic speed estimator E(- - -) to estimate the current
traffic speed of all roads in the transportation network:

Vo=EW VT, -, P), (1)

where f)o = {Dc,0le € £} is the set of traffic speed estimations,
and 0.0 is the estimated current traffic speed for road e.
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The quality of estimated speed values can be evaluated using
the mean absolute percentage error (MAPE) of the unobserved

roads:
1
e
€ |50|ee£\£0+

|6e,0 - De,()'
De,0 + ¢

MAPE , 2)

where ¢ is a small positive value' which prevents the divide-
by-zero problem if v, o = 0.

B. Related Work

Real-time traffic speed estimation and prediction is regarded
as a key component in ITS. Many statistical and learn-
ing approaches have been employed to solve the problem.
A widely adopted technique is the auto-regressive integrated
moving average (ARIMA) approach, which captures the tem-
porally related features from time-series data. For example,
references [24], [25] are some representative work on employ-
ing ARIMA and its variants in providing real-time traffic
speed with historical speed measurements. Given complete
input data, such techniques can generate both the current
speed estimations and future predictions. Using the time-series
analysis idea, other time-series models are also proposed
to address this problem, see [26], [27] for examples. These
approaches require the complete historical speed measure-
ments to generate speed estimations and predictions, rendering
it difficult to develop a complete traffic speed map with limited
speed sensor coverages.

Besides, nearest neighborhood interpolation approaches are
also widely used in the literature to handle the incomplete mea-
surement issue. Conventional solutions adopt k-NN methods
to estimate traffic speeds of arbitrary roads with known speed
measurements from its spatially adjacent roads, see [28], [29]
for examples. Recent work incorporates other traffic related
properties to perform matrix factorization methods [30], [31].
These approaches intrinsically assume that adjacent roads have
similar speeds, which is typically non-trivial [32]. There are
also results published on employing data from multiple het-
erogeneous sources for traffic speed estimation and prediction.
Interested readers may refer to [33] for a detailed review.

In recent years, researchers have been focusing on employ-
ing machine learning and neural network techniques in traffic
speed/flow estimation and prediction [19]. Reference [9] pro-
poses an autoencoder-based deep neural network to estimate
the missing speed values in the time-series traffic speed
measurements, and the stacked variant of the network is capa-
ble of providing reliable future traffic flow predictions [19].
While conventional neural network-based approaches tend to
let the network learns the topological characteristics of the
transportation network from raw input data [34], [35], recent
related work integrates the adjacency information as an input
of the model, which can significantly release the feature extrac-
tion capabilities of the technique [20], [36], [37]. Nonethe-
less, these approaches are designed for the traffic speed
prediction problem with full historical data, thus cannot be
directly employed to give speed estimations with incomplete
measurements.

Iwe set ¢ = 0.01 km/h in the case studies.

TABLE II

DEFINED SYMBOLS IN GRAPH CONVOLUTIONAL
GENERATIVE AUTOENCODER

Symbol | Definition
Generative Adversarial Network
G,D Generator and discriminator.
9G0P | Network parameters of G and D.
G(+,-),D(+,-) | Mathematical representation of G and D.

X,Z Input and noise data.

Py, P, Probability distribution of x and z.
Graph Convolutional Network
N,F | Number of input and output features.
X,Z | Input and output feature matrix.

L | Number of GCN layers.

H® | Output matrix of the I-th layer.
f(-,) | Propagation rule of GCN.
o(-) | Non-linear activation function.
A Adjacency matrix with ones at diagonal entries.
D | Diagonal node degree matrix of A.
w® p® Layer-specific weight and bias matrices of the [-th layer.

Graph Convolutional Generative Autoencoder
C' | Number of available input data matrices.

The c-th input feature matrix.

Available and missing feature nodes in X ).

Augmented input data matrices.
M | Number of new data matrices developed for each X ).

X(;) m | The m-th new input data matrix based on X ).
7~€(_c) m | Nodes whose features are removed from X () to
) generate X (_c )i
R Nodes whose features are retained in X, | .
_(e)m (¢),m
©)m Estimate of Xy by GCGA using X<c>’m.
LG | The MSE loss function of the generator.
ng,LE The BCE loss functions of the discriminator on all

X and X ).
(c),m (c)
G* | Transformed road-based transportation network.
Set of roads in G.
E* Connectivity of roads in G.
W, H | Sub-region width and height.

III. GRAPH CONVOLUTIONAL
GENERATIVE AUTOENCODER

As discussed in the previous section, existing solutions to
provide real-time estimated traffic speed suffer from draw-
backs. In this section, we propose a new data imputation
technique based on the recent development of deep learning
techniques. We first give a brief introduction on GAN and
GCN. Then we formulate the proposed GCGA model and
discuss its training method. Finally, how to employ GCGA
to handle the traffic speed estimation problem is elaborated.
The symbols used in this section is summarized in Table II
for reference.

A. Generative Adversarial Network and Graph
Convolutional Network

1) Generative Adversarial Network: GAN [22] is a recent
deep neural network framework aiming to generate artificial
samples indistinguishable from their real counterparts. This
objective is achieved by designing a generative and a dis-
criminative neural network to formulate a two-player minimax
game. In this game, the generative network, called Generator,
generates random new samples while the other adversarial
network, called Discriminator, evaluates these samples for
authenticity.
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Fig. 1. Tlustration of the proposed GCGA model architecture.

Let G and D be the generator and discriminator, respec-
tively, which are parameterized by #% and 6°. G(-,-) and
D(:, ) are the mathematical representations of G and D,
respectively. Given a group of real data x which follows a
distribution Py, GAN tries to establish a non-linear mapping
between the real data and a group of noise data z ~ Py,
where P, is trivial. The generator and discriminator play the
following two-player minimax game with objective function
V(G, D) [22]:

minmax V (G, D) = Ep_[logD(x, HD)]
9GP
+Ep,[log(1 — D(G(z, 09),0°))]. (3)

In the typical implementation of GAN, both G and D are
constructed with neural networks [22], [38]. At the beginning
of the GAN training process, G has randomized initial parame-
ters 0€, which make D reject G(z, HG) easily. In such a case,
both V (G, D) and the second term of (3), i.e., the loss function
of G, have large values. The training process tries to adjust 89
to let G generate realistic samples to fool D, rendering a low
loss value for G. In the meantime, 6P is also adjusted to make
D successfully distinguish the new and better samples from G.
This procedure repeats until G is good enough to circumvent
the rejection of D, and the real data distribution Py is learned
by G in this process. Interested readers may refer to [38]-[40]
for detailed introduction and theoretical analyses of GAN.

2) Graph Convolutional Network: GCN [21] refers to a
neural network model which aims at extracting features from
graphs. It inherits the idea of convolution filter from typical
convolutional neural networks (CNN) aiming at image pixels
or arrays of signals in Euclidean space. The filter performs
neighborhood mixing on the source data with its uniform
receptive field, leading to shared information in the result [23].
When the receptive field moves over the source data, the filter
parameters remains constant. However, receptive field parame-
ters cannot be easily shared in non-Euclidean structures such
as graphs, since the node connectivity is irregular [41]. This
limits the application of CNN to graphs.

GCN follows the idea of CNN and adopts the connectivity
structure of the input graph as the convolution filter for
neighborhood mixing [21], [42]. This model tries to learn the
features on a graph H(R,.A) which takes 1) an |R| x N
feature matrix X and 2) a representative description of the
graph structure, e.g., adjacency matrix A as input data, and
develop an |R| x F node-level output feature matrix Z, where

T
Graph Feature Discriminator

N and F are the number of input and output features for
each node in the graph. In an L-layer GCN, each layer of the
network can be expressed as a non-linear function:

HD = f(HD, Ay = (D 2AD T HOWD 10, (4

where H® is the output matrix of the /-th layer, f(-,-) is
the GCN propagation rule, o (-) is the non-linear activation
function, A = {aij}=A+1, D= {c?,'j} is the diagonal node
degree matrix of A, and WO and O are a layer-specific
tunable weight and bias matrices, respectively. Obviously,
H® = X, H: = Z, and d;; = > aij- This propagation
rule is actually motivated by the first-order approximation of
Chebyshev polynomials of eigenvalues in the spectral domain
on the input graph [21], [43], which makes the computation
fast and easy. It has been demonstrated that the approximation
can still lead to highly competitive results in graph-learning
datasets [21].

B. Graph Convolutional Generative Autoencoder

While GAN and GCN have demonstrated their efficacy in
handling data generation and graph feature extraction prob-
lems, they cannot individually overcome the main challenge
of the traffic speed estimation problem, i.e., how fo generate
realistic features (traffic speed) for each node/edge in a graph
given the graph topology and partial feature information.
In this section, we propose a GCGA model to fully address this
challenge by adopting the design principle of GAN and GCN.

The architecture of the proposed GCGA model is presented
in Figure 1. GCGA is composed of two adversarial neural net-
works, namely, an autoencoder-based graph feature generator
and a graph feature discriminator. Both networks participate in
the minimax game defined by GAN to improve the authenticity
of the generated graph features. After fine-tuning the network
parameters via training, the generator provides complete and
realistic node features as output based on the partial feature
data input.

1) Feature Generation: At the beginning of the feature
generation process, the available features in the input graph
are normalized to [0, 1], and the missing feature values are
assigned with zeros. The resulting zero-padded |R| x N graph
feature matrix is then input into the generator, which adopts
three consecutive graph convolution propagation process
(“GC1” to “GC3” in Fig. 1, defined by (4)) activated by
Exponential Linear Units (ELUs) [44] for feature learning.
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In each convolution, the number of graph features are extended
from N to 128, 256, and 512, respectively, and node fea-
tures diffuse to the respective immediate neighborhoods in
accordance with A. Using these convolutions, the generator
transforms the input partial graph features into an [R| x 512
intermediate feature matrix. This matrix is later decoded by
three other ELU-activated graph convolution layers labeled by
“GC4” to “GC6” in Fig. 1, which gradually reduce the number
of graph features back to F. The last convolution layer is
appended with a sigmoid function Sigmoid(x) = (1 +e*)~!
to reconstruct the original graph features with missing values
generated during the process. By nature, this feature generator
forms an autoencoder, which encodes the input partial data into
high-dimensional feature maps and then decodes them to the
desired complete graph features.

2) Feature Discrimination: The discriminator aims at dis-
tinguishing the generated graph features from the real ones.
This network starts with a graph convolution layer, whose
output is flattened and fed into two subsequent fully-connected
layers. While the graph convolution layer is employed to
extract hidden graph features from the input data, the fully-
connected neurons in subsequent layers cooperate to classify
the extracted features and determine whether the input data is
realistic. Finally, a sigmoid function is used at the end to yield
a probability between 0 an 1, indicating the discriminator’s
belief on input authenticity.

C. GCGA Training Method

Before using GCGA for graph feature completion, the net-
work parameter values — W and 5@ in (4), weight and
bias matrices in the fully connected layers [23] — need to
be properly adjusted. While GCGA extends the adversarial
principle of GAN to design the architecture, this model cannot
be easily trained with methodologies designed for GAN. The
main difference between GCGA and GAN lies in the generator
design, which takes partial graph features instead of random
noise data as input. Hence, we propose a training method
tailored for GCGA to account for the autoencoder nature of
the graph feature generator.

Given a collection of C node feature matrices {X() =
{xij, (C)}}c |» We use sets R(C) and R(C) to represent the nodes
whose features are available and missing in X ), respectively.
We first augment the feature data by artificially removing some
of the available features in each X(,) and construct a new
data set X. Algorithm 1 presents the pseudo-code for the data
augmentatlon process. Specifically, we first generate M unique
R R( ) sets for each X () (line 4 in Algorithm 1). The

(0).m =
available features of all nodes in R( c)m are then removed
from X to construct a new partial feature matrix X, =
{xu ©), ) (lines 3 and 6). As a result, M x C cases for the
feature generator can be constructed, each of which comprises
an input matrix X (©),m and a target output matrix X (c)- The
objective of the feature generator is to develop an estimate of
X(¢) using X(;)’m while accurately recover those artificially
removed features.

The network parameters in the feature generator and

discriminator are adjusted iteratively. In each iteration,

Algorithm 1 Data Augmentation for GCGA Training
Data: {X()}_,, M
Result: X' = {X, . X(C)}szli"fnzl
1 initialize an empty augmented feature data set X’;
2 for {c,m} € {1,2,---,C} x{1,2,--- , M} do
3| Xom < Xor
4 | generate a random R(_C)
5 | for {n, r}eR(c)m x{1,2,-
o | | x,
7
8
9

as a subset of Rz;);
-, R} do

end

the artificially constructed partial feature matrix X _ m in each
training case is first autoencoded by the generator which
develops an estimate of X (. denoted by X ©)m = (% 7.0, ml
These estimations are first compared with their corresponding
X(¢) matrix to calculate the mean square error (MSE) over
available features in X (;)’m, ie.,

‘R(c) m‘ R

|R Z Z Ixnr (c) —

(0), m

MSE(X () > X () =

nr (c) mI
(5)

where 7@?;) m= RE;) \7%{0) - The MSE loss function for the
generator can be subsequently defined as

Z Z MSE(X(C) s X©) (6)

clml

After calculating LS, the estimations are subsequently used
to adjust P, Since the discriminator’s role is to distinguish
estimations from their target matrix X, which has missing
features at nodes R(_C), the features of these nodes are also

removed in X[ for a fair classification. We assign the

(c),m
objective classification values of X(C ,, matrices to zeros,
and set those of X( to ones. Adoptmg the binary cross

entropy (BCE) loss function:

N
BCE = — ) [y log $u + (1 = y) log(1 = $)] (1)

n=1

where N is the number of test cases, y(, is the objective
classification value and y, is the actual classification result
using the discriminator, the loss values for all X ©.m and X
matrices can be calculated, which are denoted by LD and LD
respectively. Finally, the aggregated loss value, i.e., L Gzt LD
is used as the training objective of the discriminator, whose
network parameters are optimized by Adam [45]. Similarly,
the generator parameters are adjusted with respect to 1 — ng—i—
LO after tuning those of the discriminator. This finishes an
iteration of the GCGA training method. The whole training
process terminates when the generator cannot further improve
the quality of the generated node features.
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Fig. 2. An example of graph transformation from G to G*.

D. GCGA-Based Speed Estimation

In the previous subsections, the model and training method
of GCGA are proposed. Nonetheless, GCGA aims at gen-
erating realistic node features of a graph, which cannot be
directly applied to solve the traffic speed estimation problem
presented in Section II. In this subsection, we discuss the
implementation of GCGA in estimating traffic speed given
incomplete real-time data.

The first and foremost issue is that the problem requires a
solution to recover features of graph edges instead of nodes.
This issue can be resolved by transforming the original trans-
portation network graph into a new road-connectivity graph.
Specifically, we create a new undirected graph G*(N*, £*)
based on G, where N* = [ele € £} is a set of nodes,
each of which corresponds to a road in the original network.
Obviously, we have || = |N*|. Furthermore, £* denotes the
connectivity of roads in £, which is defined as follows:

E* ={(ey, e2)|Vey, er € &,
{fre1), to(er)} N {fr(ez), to(e2)} # ¥} (8)

Fig. 2 gives an example on how the transformation is per-
formed. In the illustration, the labels in the left graph denotes
the road intersections in the original transportation network,
and those in the right graph are the roads. This graph trans-
formation is incentivized by the idea that the traffic speeds
of connected roads are likely correlated but not necessarily
similar, which accords with the intuition and analysis in [32].

With the transformed road-based graph, GCGA can be
applied to handle the traffic speed estimation problem.
The feature generation network, which is a GCGA sub-
network, is employed to develop the estimated speed based
on sparsely available information with its structure and para-
meters unchanged. The feature discrimination network, while
not directly used in online generating speed maps, helps the
feature generation network to develop realistic maps during
the training process as introduced in Section III-C. Hence,
both sub-networks in GCGA is indispensible in the proposed
GCGA-based speed estimation approach.

Given real-time traffic speeds of some roads in the network,
one can construct a feature matrix input X € RV*IX6 For
each road in the network, the features are defined as 1) its
normalized real-time speed measurement (zero if unavailable),
2) maximum allowed traffic speed, 3) length of the road,
4) width of the road, 5) number of lanes, and 6) number
of point-of-interests nearby. Utilizing the fine-tuned network
parameters, GCGA can generate a complete feature matrix
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Fig. 3. An example of the sub-region operation in speed estimation.
Shadowed area is the padding region of the solid sub-region.

output Z € RV X1 with the graph feature generator, in which
each value corresponds to the normalized real-time traffic
speed between zero and one. One may note that in this work,
the features of intersections, i.e., N/ in G, is not given like
N* in G* above (which is equivalent to £ in G). Recall the
definition of X and (4) in Section III-A2, the computation
of GCGA only involves the node features of the input graph,
which is N* in G*. None of the intersection features except for
the adjacency information (A) is required during the process.
Therefore, we do not given a fixed definition on intersection
features, and using such features in traffic speed estimation is
a potential future research.

The above speed estimation process yields satisfactory accu-
racy and computation time performance when handling small
transportation networks. However, the GCGA training time
significantly increases for large urban regions where the road
networks are complicated. This is partially contrAibl}teAdAto 1the
matrix multiplication calculations in (4), where D"2AD™ 2 is
a |IN*| x |N*| matrix. At the same time, the sizes of layer-wise
GCN weight parameters in (4), i.e., W(l), are only related to
the number of input and output features of the corresponding
layer. This implies that the same set of parameters can actually
be employed in graphs with different sizes and topologies
given that they share similar characteristics. Therefore, in the
implementation of GCGA-based speed estimation, the com-
plete investigated area is divided into sub-regions for fast
computation.

Fig. 3 gives an illustrative example of this process. In par-
ticular, we first divide the whole region into sub-regions
of equal size W x H. For each sub-region, a surrounding
padding region is formulated as depicted by the shadowed
area in Fig. 3, with height H/2 and width W/2 on each
side. We aggregate all roads in the sub-region and the padding
region, and construct a sub-graph of the original transportation
network. In each time, the features (speed measurements,
maximum allowed speeds, etc.) in this sub-graph are input into
GCGA for parameter training and speed estimation. While the
graph feature generator develops estimations for both regions,
only those in the sub-region are considered in the subsequent
feature discriminator for training, or the real-time traffic speed
in estimation.

IV. CASE STUDIES

In this work, we propose GCGA to address the real-time
traffic speed estimation problem. To fully evaluate the per-
formance of the proposed technique, we conducted three
comprehensive case studies with a real world dataset.
We first investigate the accuracy of estimated speed using the
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Fig. 4. A 20km-by-20km transportation network of Cologne, Germany
obtained from OpenStreetMap [46] colored by the traffic speed from
5:00 to 5:05 in the morning.

technique, and compare the proposed technique with existing
solutions. Next, we study how dataset and problem properties
influence the estimation accuracy and model training time.
Lastly, we assess the impact of control parameters on the
system performance.

A. Dataset and Simulation Configurations

In this work, we adopt the real-world traffic data at Cologne,
Germany for investigation. Specifically, the transportation net-
work of Cologne is first obtained from OpenStreetMap [46]
using OSMnx [47], which is depicted in Fig. 4. In this
network, 16658 nodes are sparsely connected and there are
37034 edges. Furthermore, we employ the vehicular mobility
trace of Cologne [48], [49] to construct benchmark real-time
traffic speed maps of the transportation network. This dataset
provides 3.54 billion GPS and speed records of more than
700000 individual vehicle trips for a period of 23 hours
(1:00 to 24:00) in a typical working day [48].

To develop the ground truth traffic speed maps, we first
split the complete dataset into 23 x 12 = 276 chunks, each
of which corresponds to the vehicular traces of five minutes
in the day. In each timeslot, every record is fitted to its
nearest road in the network, and the corresponding driving
speed is stored as a speed data point of the road. Specifically,
the investigated area is first divided into map grids of 50 x 50
meters. Each road in the network is further divided into
road segments according to OpenStreetMap records, which are
straight lines between geographic locations in the map [46].
When fitting a GPS record to the network, we first find out
the map grid in which the record resides and its adjacent
grid in all directions, resulting in a patch of nine map grids.
Then the distances between the record and all road segments
in the patch are calculated with trigonometric functions, and
we consider the record fits the road which comprises the

nearest road segment [S0]. After all records in the timeslot
are processed, each road calculates the average value of all
stored speed data points, which is considered as the traffic
speed of the road at the specific five-minute interval. If there
is no speed data points for an arbitrary road, the traffic speed is
considered unavailable in the ground truth data. Fig. 4 presents
an example of the traffic speed map from 5:00 to 5:05 in the
morning, which is developed using the method above. Note
that roads without vehicle traces in the specified time is plotted
with gray color.

To emulate real-world cases in which the stationary speed
sensors and crowd-sourced vehicular GPS records can only
provide the traffic speed of a small portion of all roads,
we randomly® remove speed values from speed maps to
construct GCGA training and estimation cases. In particular,
we randomly select 37034a roads whose speeds are retained
in the new case, where a defines the data retention rate.
All other available speed data are removed. For each of the
276 speed maps, this process is repeated 100 times, resulting
in 27600 random cases for GCGA. For cross-validation, these
cases are then grouped into three non-overlapping categories,
i.e., a training dataset with 13800 cases for adjusting the
network parameters, a validation dataset with 6900 cases
for stopping the training process, and a testing dataset with
6900 cases for performance assessment. The validation dataset
is evaluated after each training epoch, and the training process
is terminated if MAPE of the validation cases does not
decrease for a consecutive three epoch. When testing the
system performance, the testing cases are input into the graph
feature generator of GCGA, and the resulting traffic speed esti-
mations are compared with the corresponding available ground
truth speed map in the original 276 timeslots using MAPE.

In the following case studies, the whole Cologne transporta-
tion network depicted in Fig. 4 is divided into 4 x 4 = 16
equal size grids as elaborated in Section III-D. When training
GCGA, the control parameter M is set to 24. The sensitivity of
these parameters will be investigated in Section IV-D. Further-
more, a is set to 15% unless otherwise stated. The proposed
GCGA is modeled with PyTorch [51], and all simulations
are conducted on a computing server with two Intel Xeon
E5 CPUs, and nVidia GTX 1080 Ti GPUs are employed for
neural network computing acceleration.

B. Accuracy of Estimated Traffic Speed

The accuracy of the estimated speed is among the most
important metric in evaluating the efficacy of traffic estima-
tion methods. We first investigate the accuracy of estimated
real-time traffic speed with the Cologne dataset. In this test,
the MAPE performance metric defined in (2) is adopted to
evaluate the accuracy.

1) Comparison ~ With  Existing  Traffic ~ Estimation
Approaches: We first compare the performance of the
proposed GCGA-based speed estimation method with
baseline approaches as follows:

3Unless otherwise stated, all random number generators in this work follow
the uniform distribution.
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Fig. 5. MAPE of traffic estimation methods on the traffic speed values in
Cologne.

o Linear Regression (LR) utilizes the road properties and
available historical speed data to learn a linear model and
estimate traffic speed [32].

o Linear Regression with Graph Regularization (LG) [52]
models the speed estimation problem as a graph learning
problem. The model makes an implicit assumption that
connecting roads share similar traffic speeds [32], [52].

We implement LR and LG and use the same simulation
configuration as the proposed GCGA-based method to assess
their performance. In addition, we adopt the simulation results
of the following recent traffic speed estimation approaches
from [32] for reference, which employs different datasets from
the Cologne one:

o Matrix Factorization-based Traffic Estimation
(MFTE) [30] employs partial vehicle driving trajectories
and meterology context as input data and performs
matrix factorization to provide estimates on missing
values in a feature matrix.

o Crowdsourcing-based Traffic Estimation (CTE) [32] uti-
lizes a graph model to infer the traffic trend in the
transportation network and adopts a probabilistic model
to learn the traffic speed.

In the comparison, the testing dataset with 6900 cases is
employed to evaluate the performance of the compared algo-
rithms, which is identical to GCGA. All other simulation
configurations are identical to those stated in Section IV-A
for a fair comparison.

The MAPE of all implemented traffic estimation methods
over the tested 23 hours are presented in Fig. 5. In this figure,
the MAPE of estimated speed values developed by GCGA,
LR, and LG on all 276 speed maps are presented. From the
results, it is clear that the proposed GCGA-based traffic speed
estimation method significantly outperform other compared
approaches. On average, GCGA achieves a satisfactory MAPE
at 7.3%, while the baseline approaches score 23.6% and 17.9%
by LR and LG, MFTE, respectively. Furthermore, reference
[32, Sec. VI-C] reports that MFTE and CTE achieve 20%—-22%
and 10%—-15% MAPE, respectively. The outstanding perfor-
mance of GCGA is contributed by its unique generative model
design. In addition, the deep GCN architecture in the graph
feature generator can better extract spatial characteristics of
the partial information provided as input.

For a more direct view of how well GCGA can estimate
the traffic speed, Fig. 6 presents an example of the input
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traffic speed map and the generated data by the proposed
GCGA-based method at 5:00-5:05 and 7:30-7:35 in the
morning. While the former case represents a typical trans-
portation condition of the network, the latter is among the
most congested time in the working day. From the results we
can observe that the central downtown of Cologne is the most
congested region in the city. The congested area significantly
grows from 5:00 to 7:30 in the morning, which corresponds
to the massive volume of daily commutes. Nonetheless,
the MAPE does not demonstrate obvious spatial or temporal
correlation with respect to the central congestion condition.
In addition, we summarize the MAPE histogram of traffic
speeds in Fig. 7. From the figure, no clear relation between
MAPE and averaged traffic speed can be established. This indi-
cates that GCGA can develop robust traffic speed estimations
on different traffic conditions.

2) Comparison With Deep Learning Approaches: Besides
the previously compared traffic estimation approaches in the
literature, there are also some other deep learning approaches
that can be employ to address data imputation tasks. We com-
pare the proposed GCGA with the following deep learning
methods:

o Deep Autoencoder (DAE) [53] learns an encode of a set
of input data with deep neural networks. In this work,
we use the graph feature generater part of GCGA as the
compared graph-generating DAE, which is trained with
respect to LS.

o Multi-hidden-layer ~ Multilayer — Perceptron  Network
(MLP) [23] is a class of neural networks with multiple
hidden layers. In this work, the tested MLP is designed
with the same architecture as illustrated in Fig. 1, but
with each of the graph convolution computation replaced
by fully connected links.

o Shallow GCGA (S-GCGA) is a variant of the proposed
GCGA but with a “shallower” architecture. In particular,
two graph convolution layers, namely “GC3” and “GC4”,
are removed from GCGA to formulate S-GCGA.

All compared deep learning techniques are trained using Adam
optimizer with the same config as GCGA. All methods share
the same training, validation, and testing dataset, and all
other simulation configurations are identical to previous tests.
The MAPE of all compared techniques are also depicted
in Fig. 5. Compared with the other deep learning approaches,
the proposed GCGA can still maintain its leading position.
DAE, MLP, and S-GCGA score 10.9%, 27.9%, and 12.2%,
respectively. This result indicates that the basic constituting
components of GCGA, i.e., graph convolution, generative
adversarial model, and deep neural network architecture, are
all critical to the satisfactory accuracy. Since DAE lacks the
discriminator and S-GCGA has a shallower architecture, their
capability of generating realistic data and feature extraction is
undermined. This demonstrates the efficacy of the GAN-like
generator-discriminator design in GCGA. Meanwhile, MLP
performs badly in the test. This is because the adjacency
information of a graph is critical to problems such as traffic
speed estimation. However, the information is not included in
the input data of MLP, which has to learn it during the training
process.
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An example input speed map and the generated traffic speed map from 5:00 to 5:05 and from 7:30 to 7:35 by GCGA. (a) Input traffic speed at

5:00 to 5:05. (b) Generated traffic speed at 5:00 to 5:05. (c) MAPE from ground truth in Fig. 4 at 5:00 to 5:05. (d) Input traffic speed at 7:30 to 7:35.
(e) Generated traffic speed at 7:30 to 7:35. (f) MAPE from ground truth at 7:30 to 7:35.
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Last but not least, the proposed GCGA-based traffic speed
estimation method requires less than one second to produce the
complete traffic speed map given fine-tuned GCGA network
parameters. Considering that the speed map is updated every
five minutes in the testing dataset, this suggest that the
proposed method can develop accurate speed estimations in
real-time.

C. Impact of Dataset Properties

In the adopted Cologne dataset, we aggregate the vehicular
trace records within five minutes to develop each of the traffic

speed maps. Furthermore, the data retention rate is artificially
set to 15%. In practice, different transportation networks
may require real-time traffic speed estimations with various
temporal resolutions, and the real retention rate is closely
related to the number of stationary sensors and crowdsourcing
vehicles. Therefore, it can help us understand the robustness
of the proposed GCGA-based speed estimation method by
assessing the impact of these properties.

In this subsection we first perform a parameter sweep test
on the dataset temporal resolution. In particular, the adopted
Cologne dataset is re-processed using the same method elab-
orated in Section IV-A, and each traffic speed map com-
prises the vehicular trace records in 30 seconds, one minute,
ten minutes, and 30 minutes for four new test scenarios,
respectively. We are interested in its impact on the estimation
accuracy.

The MAPE of GCGA with different temporal resolutions
are depicted in Fig. 8. From this plot, it is clear that the
estimation accuracy gradually increases with the decrease
of temporal resolution at any time of a day. Furthermore,
when the vehicular traces with more than five minutes are
aggregated, the performance of GCGA is quite similar from
7:00 to 20:00. This observation accords with the intuition
that a higher resolution can lead to a more fluctuating traffic
speed for a same road, since the influence of each individual
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approximately 17 hours on one testing GPU.

vehicle is emphasized with the reduction of total number of
traces. In daytime and peak hours, the large amount of traces
make the sample mean of speed values from traces better
resemble the population mean, resulting in a more stable
performance. Both sample size and traffic (flow) dynamics
can greatly impact the sample variances of trace speeds in
the dataset. Nonetheless, as GCGA receives sample means
as inputs instead of individual observations, sample variances
do not play a significant role in generating accurate speed
estimations. On the other hand, the vehicle trace data during
night-time and off-peak hours, e.g., 22:00 to 3:00, is sparse
with high temporal resolutions (<5 minutes). This makes it
difficult for the system to develop highly accurate estimations.

Besides the temporal resolution, another critical dataset
property that may influence the system performance is the
data retention rate a. In the previous test, we assume that
a = 15%, which accords with most of the case studies
in [32]. Nonetheless, it is possible that real-world datasets
may have more or less roads whose traffic speed is known.
In this test, we assess the performance of GCGA with a €
{3%, 5%, 10%, 20%, 25%}. All other simulation configura-
tions are identical to the settings in Section IV-B. The results
are summarized in Fig. 9. From the figure we can conclude
that GCGA can better address datasets with more available
traffic speed values, i.e., larger a. Such datasets can provide
more inter-correlated traffic information in the input training
cases, which can facilitate GCGA to extract the spatial features
in the speed map better and faster. In the meantime, even with
only 3% of the speed data available, the proposed system can
still generate complete speed maps with less than 15% MAPE
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on average. While such speed values are not as accurate, they
can still demonstrate a rough picture on the status for the
investigated transportation system.

D. Parameter Sensitivity Analysis

In previous simulations, we divide the whole Cologne
transportation network shown in Fig. 4 into 16 grids to reduce
GCGA training time, and M = 24 is employed in the
data augmentation process of the training. In this subsection,
we investigate the system sensitivity on these two control
parameters. Specifically, we first divide the network into
2x2 =4 3%x3 =9, 5x5=256x6 = 36, and
7x7 =49 grids to re-train GCGA and assess the performance
deviation from the baseline 16-grid scenario. The results are
summarized in Fig. 10. From the figure it is clear that the grid
size does not significantly influence the accuracy of estimated
traffic speed values as long as the grid size is sufficiently
large with respect to the investigated area. Nonetheless, too
small grids, e.g., 7 x 7 case, can only provide partial spatial
relationship of the network, rendering worse MAPE. In the
meantime, larger grid generally yields longer training time,
which accords with our previous analysis in Section III-D.
The training time for 16, 25, and 36 grids is almost the
same. This is because while the matrix multiplication in (4)
is accelerated with a smaller matrix size, the total number of
test cases also increases with the grids. When the number of
grids increases to 49, the increase in total number of testing
cases and training difficulty overwhelm the decrease in matrix
computation complexity. Hence the training time increases.
To conclude, dividing the Cologne dataset into 16 grids, each
of which on average contains approx. 2000 roads, for GCGA
is preferred in terms of model training time.

Finally, we test the sensitivity of parameter M with values
in {4,9,49}. Combining with the baseline test in which
M = 24, the results are summarized in Fig. 11. From the
figure it can be observed that increasing M can lead to
better estimation accuracy, but the training process is also
lengthened. In addition, when M is greater than 24, the accu-
racy improvement is not notable enough to compensate the
significantly increased training time. In GCGA, the more
adversarial traffic maps generated by the graph feature gen-
erator, the better it can be trained to circumvent the detection
of the discriminator. On the other hand, the traffic map classi-
fication capability of the discriminator is limited by its neural
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network architecture. This explains why the estimation accu-
racy cannot be further improved when more than sufficient
adversarial data are developed.

V. CONCLUSIONS

In this work, we propose a new deep learning model
called GCGA to address the real-time traffic speed estimation
problem. Different from existing approaches, the proposed
technique can extract the spatial characteristics from the trans-
portation network and construct the complete traffic speed map
with partial measurements using a generative learning model.
The proposed GCGA incorporates the concept and design
principle from GCN and GAN to provide an outstanding
graph feature completion capability. In addition, due to the
incomplete graph input data, we propose a practical GCGA
training method to fine-tune the network parameters. Further-
more, the proposed GCGA is adopted to address the traffic
speed estimation problem, and the issues in its implementation
are addressed.

We conduct comprehensive case studies to assess the per-
formance of the proposed approach utilizing the transportation
network and vehicular trace records in Cologne, Germany.
The simulation results demonstrate a satisfactory estimation
accuracy for GCGA. Additionally, GCGA can outperform
both existing traffic speed estimation solutions and other
representative deep learning approaches in addressing this
problem. We also analyze the impact of the dataset properties
with simulations, and illustrate the sensitivity of GCGA with
respect to various control parameter configurations.

The future work can go in three directions. First, it is
possible to extend the existing architecture to address traffic
flow estimation/prediction and speed prediction problems by
incorporating deep learning prediction techniques. Existing
research [19] has demonstrated that deep learning approaches
can handle the problems with efficacy, and the proposed
GCGA can be further integrated with recurrent neural net-
works to provide temporal inference capability for predictions.
Second, the plethora of traffic-model-based methods for traffic
speed estimation as introduced in Section I may help design
a hybridized speed estimator based on GCGA, which can be
expected to inherit merits from both parents. Finally, GCGA
is proposed as a general-purpose graph feature completion
approach. It is promising to apply the methodology in solving
other research and industrial problems, e.g., [54].
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