
Reconstruction of Missing Trajectory Data: A Deep Learning Approach

Ziwei Wang, Shiyao Zhang, and James J.Q. Yu, Member, IEEE

Abstract— GPS trajectory data have become increasingly
useful in traffic analysis and optimization. Nevertheless, due
to sampling and communication-related issue, such trajectories
suffer from data missing problems, and they further render a
low quality of raw data for subsequent research. To address this
problem, in this work, we propose a recurrent neural network
based encoder-decoder deep learning approach. The head-
direction information of trajectory, defined by the radius of
curvature, is utilized together with the displacement attributed
by an attention mechanism to learn from past trajectory points
with different priority. Additionally, a smoothing data post-
processor is adopted to make the reconstructed trajectories
authentic. To evaluate the performance of the proposed re-
construction approach, a series of comprehensive case studies
are conducted, which indicates that the proposed approach
significantly outperforms baselines, such as the reduction of
the missing impact to the original data and improvement in
the prediction accuracy.

I. INTRODUCTION

In the era of big data, with the development of mobile
Internet and the popularity of smart phones, a massive
volume of trajectory data of moving objects is generated by
containing abundant spatio-temporal characteristics. Properly
analyzing such data is of utmost importance in the modern
smart city development. For example, trajectories processing
in the urban transportation can provide great insights into op-
timizing traffic routes, such as personalized recommendation
routes, road network prediction, urban planning, etc [1]–[3].

However, during the process of gathering such trajectories,
the trajectory data may be potentially affected by uncertain-
ties such as stochastic communication loss and positioning
error, render missed data points. Such data loss introduces
noises to the source of subsequent trajectory-related traffic
and transportation services. In addition, trajectory data has
the characteristic of great randomness, e.g., the life habits of
users vary greatly and the traffic situation changes rapidly.
These two cases raise the problem of direction rectification
and missing location prediction.

In recent years, deep learning has become prevalent in
Intelligent Transportation Systems (ITS) research, which is
bolstered by the recent significant advance of storage and
computing technologies. Transportation system, known as a
special and complex system, consists of the multiple factors,
including personal behaviours and vehicle types, time and
weather, accidents and public construction, etc. Compared

This work is supported in part by the General Program of Guangdong
Basic and Applied Basic Research Foundation No. 2019A1515011032 and
in part by Guangdong Provincial Key Laboratory No. 2020B121201001.
(Corresponding author: James J.Q. Yu.)

The authors are with the Guangdong Provincial Key Laboratory of Brain-
inspired Intelligent Computation, Department of Computer Science and
Engineering, Southern University of Science and Technology.

to traditional problem solving methods, deep learning tech-
niques take advantage of better describing the randomness
and variety of transportation, see [4]–[6] for examples.

A. Prior Art and Comparisons

There are two important steps in the trajectory data
processing, i.e., data pre-processing and trajectory similarity
measurement. Trajectory data pre-processing indeed includes
noise filtering and trajectory segmentation. Generally speak-
ing, there are three ways to filter noise points: mean filter
[7], Kalman filter [7], and particle filter [8]. Several main
strategies for trajectory segmentation are based on the time
threshold, geometric topology and trajectory semantics [9]
[10].

Determining the similarity among trajectories is a critical
research problem to trajectory analysis applications such
as trajectory clustering and relationship mining. For a pair
of trajectories with the same length, the basic evaluating
metrics are Mean Square Error (MSE) and Mean Absolute
Error (MAE). Furthermore, Dynamic time warping (DTW),
Longest Common Subsequence (LCSS) [11], and Edit Dis-
tance Real Sequence (EDR) [12] are the robust and pre-
cise techniques that can work with asymmetric sequence.
However, the issue of high computational complexity occurs
with the use of large datasets that cover thousands or even
millions of trajectories. Therefore, it is worth exploring a
new method to develop trajectory similarity scores with less
computational burden.

At present, modeling methods can be roughly split into
three categories: statistical, machine learning (non-deep
learning), and deep learning methods. The majority of re-
search effort in the past literature focuses on statistics-
based models for prediction, such as Hidden Markov Model
(HMM) [13] and tensor completion algorithm [14]. As for
machine-learning methods, clustering is the most prevalent
for missing spatio-temporal data completion [15]–[17]. In
the meantime, a number of recent work shows that deep
neural networks are able to recover the missing traffic data
for prediction. Among the proposed approaches, Convolu-
tional Neural Networks (CNNs) are widely adopted, whose
architecture, however, requires that all input trajectories must
be of the same length. For example, Lv et al. [18] used
CNNs for taxi trajectory prediction and fused additional time
and driver information in a fully-connected layer so as to
further improve the system performance. Besides, generative
adversarial network (GAN) is another widely-recognized
deep learning technique in the context. For instance, Li et al.
used a fractionally strided 3D convolutional neural network
to construct the generator network and a 3D convolutional
neural network as the discriminator network for missing

traffic data completion in [19]. However, these network struc-
tures require fix-length trajectory as input, which ignores the
information contained in other parts of a trajectory.

To overcome the fixed-length trajectory issue in the above
CNN-oriented research, recurrent neural networks (RNNs)
are utilized due to their capability of handling data at
variable lengths. Şahin [20] studied the regression of vari-
able length missing sequential data and introduced a long
short-term memory (LSTM) based algorithm for time-series
data reconstruction. Liang et al. [21] introduced a random
forest approach to identify the missing trajectory points first,
and then applied LSTM as the second step for trajectory
reconstruction. Wang et al. [22] proposed a hybrid model
that integrates MLP to extract local features and LSTM
to capture long term dependency, and then random forest
for further prediction error minimization. However, in the
previous studies, a single RNN structure is only deployed
for the part of trajectory before prediction point. Hence, it is
reasonable to apply a new method which uses the information
of the whole trajectory for missing value prediction.

B. Contributions

To fill the research gaps shown above, the main contribu-
tions of this work is as follows.
• In this paper, we deploy recurrent sequence-to-sequence

neural network to handle the missing trajectory recov-
ery and demonstrate the superiority of the proposed
approach.

• We propose a method of trajectory slice embedding with
an iterative random matrix. The information of radius
of curvature is included in this step for reconstruction
robustness, which is novel as far as we are concerned.

• We propose a new trajectory similarity comparison
function, which has a unified and finite scope. The
function serves as the loss function of the proposed
model and is easy to implement and fast to compute.

The remainder of this paper is organized as follows.
Section II introduces the definition of missing trajectory
data recovery problem and preliminaries. Section III presents
the proposed model for data recovery. Section IV gives the
results and analyses on a comprehensive set of case studies
based on a real world dataset. Finally, this work is concluded
in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we formulate the missing trajectory recov-
ery problem and present the pre-processing stages required
in the subsequent section.

A. Missing Trajectory Data Recovery

A trajectory L is a sequence of timestamp locations. For
each time t, point Lt = (xt, yt) represents the coordinates
with longitude xt and latitude yt, 1 ≤ t ≤ n. We use L to
denote the ground truth trajectory, L̃ to denote the sampled
one corresponds to L with missing coordinates, and L̂ to
denote an estimated one to resemble L. We use I to mark
the missing locations. An indicator series I produced by a

characteristic function takes value of 0 or 1 and has the same
length n with L. The characteristic function is defined as
follows: for time t, It = 1 if the t-th coordinate, i.e., Lt is
missing, otherwise It = 0. The missing set O = {Lt|It = 1}
is the set of all missing point in L. If Lt ∈ O, then
It = 1, which means Lt is missing. We aim to construct
a neural network which can recover the missing data in the
trajectories.

B. Encoder-Decoder Structure and Attention Mechanism

Encoder-Decoder structure is a type of deep learning
architectures consist of two sub-neural networks called en-
coder and decoder [23]. The encoder reads an input data
sequence and outputs an intermediate latent information
tensor, and the decoder translate the tensor and produce
an output sequence. The intermediate tensor that passes the
input data characteristic information from encoder to decoder
is typically called context vector, denoted by c.

Attention mechanism is widely used in this structure due
to the two major limitations of context vector decoding [24].
On the one hand, when the input sequence is excessively
long, it is hard for the context vector to express the complete
input information. In such cases, the information at the end
of the sequence are more concentrated, rendering inferior
model capacity. On the other hand, predicting target data
sequence may put different emphases on various positions at
the source sequence. Attention mechanism is thus introduced
to deal with these issues. The fixed context c is replaced by
ct, which is dynamically computed according to the current
output to adjust the model.

Let the input and output sequences’ length be n and m.
Given a source sequence x = (x1, . . . , xn)

T, x is encoded
as h = (h1, . . . ,hn)

Tby the encoder. When decoding the
target sequence y = (y1, . . . , ym)T, a hidden vector H =
(H1, . . . ,Hm)T is created successively. Instead of directly
using h as the context vector for decoding, an additional
attention weight is adopted for context transformation by
ct = aTth, where the attention at = (a1,t, a2,t, · · · , an,t)
and ai,t = exp(f(Ht−1,hi))/

∑n
j=1 exp(f(Ht−1,hj)).

C. Curvature Radius

At a given point on a curve, let r be the radius of the
osculating circle. If the curve is written in the form y = f(x),
the radius of curvature is given by

R(x) =
[
1 + f ′(x)

2
]3/2

/ |f ′′(x)| . (1)

For trajectory L, we calculate the radius of curvature R with
respect to the longitude and latitude values of each location.
The two sequence are first fit with polynomials of order p =
40, denoted by fx and fy . Then, we use (1) to compute
Rt = (fx(xt), fy(yt)) in terms of the fitted curve. Intuitively,
R has the same shape as L, i.e. [n, 2].

The idea of adding curvature information to the process is
due to the fact that the major difficulty lies in the inflection
point. If a starting point is given without any restriction to the
result, the generated trajectory is usually overly smooth. We
hypothesize that the inclusion of this additional information

can improve the model performance, which is supported by
empirical studies presented in Section IV.

III. PROPOSED MODEL

In this section, we propose a new deep learning based
technique to impute the missing data within trajectories.We
first give the structure of the neural network and define a
new similarity measurement criterion. Then, we provide the
training details and the subsequent processing method.

A. Encoder Network

Gated Recurrent Unit (GRU) has the capability on han-
dling time-series dataset, which is advantageous in capturing
the long-term dependency. We use GRU as the encoder
network. Let h be the hidden size of GRU and the initial
hidden state h0 is zero. For each time t, a coordinate
Lt = (xt, yt) is sent to the encoder and processed via the
following two steps:

1) Embedding.
L′et = tanh(WeeLt + bee +WerRt + ber). (2)

2) GRU.

rt =σ(WelL
′
t + bel +Wehht−1 + bh), (3a)

zt =σ(WelL
′
t + bel +Wehht−1 + beh), (3b)

h̃t = tanh(WelL
′
t + bel + rt ⊗ (Wehht−1 + beh)), (3c)

ht =(1− zt)⊗ ht−1 + zt ⊗ h̃t, (3d)

where Wee,Wer ∈ Rh×2, Wel,Weh ∈ Rh×h and bee,
ber,bel,beh ∈ Rh×1 are the neural network parameters to
be learnt by training. In the formula, rt and zt are the reset
and update gates respectively. h̃t is the intermediate cell
state, and⊗ represent the Hadamard product. ht is the hidden
state vector at time step t. The current coordinates with its
curvature are combined through the fully connected layer for
embedding. It extracts the information of trajectory points
from 2-dimensional coordinates to an h-dimensional latent
space. Subsequently, a GRU layer is employed to further
extract the data characteristics from raw trajectories for later
reconstruction.

B. Decoder Network

The previous encoder network generates hidden states for
every time step, h = (h1, . . . ,hn), which contains the whole
information of a trajectory. In this work, the decoder is also
constructed by GRU but with assistance from the attention
mechanism. Given the encoded latent information h, the
decoding process first employs (2) to embed the input Lt.
Subsequently, the attention mechanism is employed to better
extract local relationship among the latent information:

wt =softmax(Ww[L
′
t,Ht−1] + bw) (4a)

at =wT
t h (4b)

lt = relu(Wa[L
′
t,at] + ba) (4c)

After the attention, the decoder re-employes GRU structure
to capture the temporal data dependency as previous pre-
sented in (3). But the input of decoder GRU change to lt

and Ht−1 , then the trainable parameters are different from
those in the encoder. Finally, the ouput is projected using
two layers of fully connected neurons:

l̂t =σ(WoHt + bo) (5a)

L̂t =Wm l̂t + bm (5b)

where Ww,Wa ∈ R2h×h, Wo ∈ Rh×h, Wm ∈ R2×h and
bw,ba ∈ R2h×1, bo ∈ Rh×1, bm ∈ R2×1 are the network
parameters. lt uses the complete information obtained from
encoder since at is the weighted sum of encoder hiddens. l̂t
is the direct output of decoder GRU, and the final output L̂t
is accordingly derived by a linear mapping.

C. Loss Function

Instead of using Mean Square Error (MSE) directly as the
loss function for training the neural network, we propose a
new loss indicatorR2, which divides MSE by the variance of
the true trajectory L to cancel the influence of some outliers
and improve the robustness of the result. R2 is also called
decision coefficient, which reflects the proportion of total
variation of the dependent variable that can be explained by
independent variable in regression analysis. Neural network
can be seen as a generalized nonlinear regression composed
of multiple linear regression. Accordingly, it is reasonable to
measure the accuracy among trajectories by using R2:

R2 = 1− MSE(L̂− L)

Var(L)
, and Loss(L, L̂) = −R2. (6)

Specifically, MSE is calculated point-wisely between L̂ and
L. L̂ is the estimated trajectory and L is the ground truth
one,respectively. A larger R2 ∈ [0, 1] represents a smaller
relative error, rendering a higher accuracy. The extreme cases
occurs when R2 = 0 or 1. R2 = 0 indicates that it is better
to take the mean value without any prediction, while R2 = 1
indicates that all predictions match the true results perfectly.

D. Training the Neural Network

The whole network trains one trajectory L randomly at
one iteration and uses Adam optimizer [25] of learning rate
0.0001 for back propagation in both encoder and decoder,
and gradient clipping is added to avoid gradients explosion
[26]. At every time step t, the input of the encoder is Lt
together with the hidden state generated in the previous
step ht−1, and the output ht is recorded. For the decoder,
the input data is constructed considering the data missing
situation. For each time step t, if It = 0, the input of
the decoder is Lt, and Ht−1 is used as the latent cell
information. Otherwise, the input is L̂t that was developed
in the previous time step t−1. The outputs of the decoder is
L̂t+1 and Ht. The final output trajectory L̂ is reconstructed
as {Lt ⊗ (1− It) + L̂t ⊗ It}.

E. Smoothing

As will be shown in the case studies, the restored trajectory
of the network output is zigzag due to the fact that the
restored location has random tiny offsets from the respective
real location. For this reason, it is necessary to smooth the

new trajectory so that the outputs can be more authentic.
A hybrid method of combining Moving Average (MA) with
Savitzky-Golay (SG) filter [27] is proposed in this paper.
For an estimated trajectory L̂, we first apply MA over the
missing set O = {Lt|It = 1} that are recovered by neural
network. After that, SG filter will move through the whole
sequence, i.e. every point in the trajectory.

Let the order of MA be 2m + 1, and the length of the
trajectory Lt be n. In this work, m = 7. We apply MA on
points that are missing, i.e. for all Lt ∈ O:
L′t =(x′t, y

′
t)

=



(∑t+m
i=1 xi
t+m ,

∑t+m
i=1 yi
t+m

)
, 1 ≤ t < m(∑t+m

i=t−m xi
2m+1 ,

∑t+m
i=t−m yi
2m+1

)
, m ≤ t ≤ n−m(∑n

i=t−m xi
n−t−m+1 ,

∑n
i=t−m yi

n−t−m+1

)
, n−m < t ≤ n

(7)

Subsequently, SG is employed to post-process the recovered
trajectory, which is widely adopted in time series de-noising
due to its simplicity and efficacy. The principle of SG filter
is based on local polynomial least square estimation in
time domain. Let the filtering window length be 2w + 1.
A kth order polynomial y =

∑k−1
i=0 aix

i is applied on
the subsequence (xt−w, · · · , xt+w) for fitting. To make the
equation solvable, 2w+1 > k must hold. Here we take w = 4
and k = 5. For t on head and tail, the subsequence will be
extended by the nearest value. For example, the sequence
is (x1, · · · , xn) and suppose that w = 2, then its extension
becomes (x1, x1|x1, x2 · · · , xn|xn, xn). Write the 2w + 1
equations by matrix:

X =


1 x−w · · · x−w

k−1

1 x−w+1 · · · x−w+1
k−1

...
...

. . .
...

1 xw · · · xw
k−1

 (8a)

y =


y−w
y−w+1

...
yw

 ,a =


a0
a1
...

ak−1

 , e =


e−w
e−w+1

...
ew

 (8b)

y = Xa+ e (8c)

Therefore, the mean square solution of a is:

â = (XTX)−1XTy, (9)

and

ŷ = Xâ = X(XTX)−1XTy = By, (10)

where B = X(XTX)−1XT.

IV. EXPERIMENTAL EVALUATION

In this section we examine the performance of the pro-
posed model. First we introduce the dataset and the data
preprocessing technique. Next, we analysis the data recovery
accuracy with different missing rate, make comparisons of
the proposed model with three baseline models as well as
two traditional methods, and then test the effect of neural
network hidden size on the results.

TABLE I
RATE OF MISSING DATA WITH DIFFERENT PARAMETER

CONFIGURATIONS

Missing Rate (%) λ1 = 1 λ2 = 5 λ3 = 10 λ4 = 15
p2 = 0.05 6.34 19.71 32.62 41.55
p3 = 0.10 11.97 32.97 49.25 58.68
p4 = 0.15 16.92 42.45 59.24 68.02
p5 = 0.20 21.37 49.60 66.00 73.90

A. Dataset and Simulation Configurations

The GPS trajectory data used in this work was collected by
Geolife project from 182 users in a period of over five years
[28]. This dataset contains 17621 trajectories with a total
distance of 1292951 kilometers and duration of 50176 hours.
These trajectories were recorded by different GPS loggers
and have a variety of sampling rates. Each of the trajectory
is a sequence of time-stamped points, which consists of
latitude, longitude, and altitude. We segment the trajectories
into time-series of 200 or less GPS points to make 145987
trajectories for case study. The fragments are continuous
and of equal intervals 5s. After segmenting the dataset, we
construct the missing data within trajectories according to
the following steps:

1) Ensure that I1 = 0, i.e., the starting point of each
trajectory L1 is not missing.

2) At time t ≥ 1, randomly draw b from Bernoulli(p)
to judge whether the point is missing. Then a random
integer k is sampled from the zero-truncated Poisson
distribution, i.e. K ∼ Pr(K = k) = λk

(1−e−λ)k!e
−λ. It

means that from time t, k steps will be continuously
missing, i.e. Ii = 1, t ≤ i ≤ t + k − 1. We also have
a parameter kmax to control the maximum continuous
missing length. If k > kmax, set k = kmax; At last,
It+k = 0, which means no missing at time t+ k.

3) Repeat Step 2 and stop until the array length exceeds
the trajectory length.

This process of making missing data is mainly controlled
by p and λ. As the expectation of the distribution is hard
to derive, we compute this value numerically by randomly
generating 100000 I’s of length n = 200 and present
the statistics in Table I. The training set and testing set
contain 60000 and 10000 trajectories, respectively, which
are randomly selected from the complete dataset without
intersection after segmenting. The experiment is modeled
with PyTorch, and eight nVidia RTX 2080 Ti GPUs are
employed for neural network computing acceleration.

B. Data Recovery Accuracy

The accuracy of the estimated accuracy is among the
most important metric in evaluating the efficacy of traffic
estimation methods. We first investigate the average R2

with different missing rate configurations, namely, p ∈
{0.05, 0.10, 0.15, 0.20} and λ ∈ {1, 5, 10, 15}. The dimen-
sion of hidden state h is set to be 128.

The simulation results are presented in Table II. In general,
the model develops satisfactory result in all missing modes.
R2 declines as p and λ increase and the decline is more
drastic with larger p and λ. The variance also shows some

TABLE II
DATA RECOVERY ACCURACY OF THE PROPOSED APPROACH

λ = 1 λ = 5 λ = 10 λ = 15
Accuracy (%) Variance Accuracy (%) Variance Accuracy (%) Variance Accuracy (%) Variance

p = 0.05 99.32 0.0002 97.34 0.0026 93.68 0.0079 89.17 0.0178
p = 0.10 98.81 0.0003 96.15 0.0036 91.24 0.0131 87.30 0.0262
p = 0.15 98.44 0.0005 94.60 0.0049 90.70 0.0152 85.42 0.0310
p = 0.20 98.38 0.0008 93.34 0.0070 86.78 0.0210 84.43 0.0326

TABLE III
COMPARISON OF DATA RECOVERY ACCURACY

p = 0.05, λ = 15 p = 0.10, λ = 15 p = 0.15, λ = 15 p = 0.20, λ = 15
Accuracy (%) Variance Accuracy (%) Variance Accuracy (%) Variance Accuracy (%) Variance

Proposed 89.17 0.0178 87.30 0.0262 85.42 0.0310 84.43 0.0326
GRU 88.16 0.0262 82.11 0.0524 78.78 0.0854 72.56 0.1015

GRU-ED 84.18 0.0337 80.41 0.0621 75.22 0.0856 74.16 0.0572
GRU-Attn 85.04 0.0350 81.79 0.0431 79.99 0.0485 77.85 0.0688
ARIMA 88.64 0.0357 84.00 0.0573 80.87 0.0717 79.28 0.0814

Kalman Filter 88.08 0.0339 82.80 0.0603 79.61 0.0787 78.22 0.0833

regularity, a higher accuracy is usually paired with a smaller
variance, indicating a higher reliability. Last but not least,
the consecutive missing parameter λ has greater influence to
variance than p. Fig. 1 shows an example of the recovered
trajectories with p = 0.10 and λ = 5. The entity moves from
the green point to the red one following the orange curve,
and the black parts represent the missing data. The dash-dot
blue curve is the re-constructed trajectory.

Fig. 1. Examples of trajectory recovery

In addition to the accuracy assessment, we also implete an
ablation test of the proposed model with baseline approaches.
Specifically, we construct four models of the components
from the canonical GRU, the encoder-decoder structure GRU
(denoted by GRU-ED), GRU-ED with attention mechanism
(GRU-Attn), and finally the proposed model with radius of
curvature added for mapping the original coordinates (Pro-
posed). The learning rate and the hidden size are identical
to the proposed approach. Additionally, we also compared
the proposed approach with two traditional statistic methods,
i.e., ARIMA and Kalman Filter (KF) [29]. In the test, AIC
[30] is employed to determine the order of ARIMA(p, d, q)
in ARIMA as a time-series analysis algorithm, which takes
all combinations of 0 ≤ p, d, q ≤ 2 and selects the optimal
recovered trajectory as model output. KF adopt the current
measured state and the estimated state of the previous
sampling period to estimate the realistic state. Due to the
space limit, we consider the missing data patterns when
the longest consecutive missing happened —λ = 15 with

p = 0.05, p = 0.10, p = 0.15, and p = 0.20— to evaluate
the performance of baselines and the proposed approach in
handling hard trajectory reconstruction tasks. The simulation
results are summarized in Table III.

From this table, it is evident that the proposed approach
achieves the best performance in terms of recovery accuracy.
Besides, the variance has a significantly decline from any
compared approaches. This is because the added curvature
radius provides additional information to the learning system,
and thereby obtain stable results. Furthermore, the advan-
tage of the proposed approach expands with the portion of
missing data among all, indicating the superior data recovery
capability of the proposed approach.

The traditional statistic methods are still competitive
in comparison with deep learning approaches, the average
accuracy of ARIMA is slightly superior than that of KF.
But since ARIMA expends a long time duration of selecting
the optimal order combination, its computation cost has no
much difference between deep learning approaches. Among
other deep learning methods, GRU is advantageous when
the missing situation is mild but is inferior when p is large.
Conversely, GRU-ED, as well as GRU-Attn, are weak when
p is small but work better when p is large, which means that
the encoder-decoder structure and attention mechanism can
better capture the spatial-temporal information and recover
the missing locations. This ablation test demonstrates that all
major components in the proposed approach contributes to
the final data recovery performance.

C. Parameter Test

The dimension of hidden state h in the proposed neural
networks determines the size of representation space, which
has crucial influence on the system performance. In this
section, we examine the effect of h on the performances of
the proposed approach by re-training multiple models with
h ∈ {32, 64, 128, 256, 512}. All other settings are identical
to those in the previous section, and the simulation results
are presented in Table IV. From the simulation results, it
can be observed that the accuracy increases with h for
h ≤ 256 and remains at a high level afterwards. Since the
performance improvements for h ≥ 256 is not as significant

TABLE IV
RESULTS OF PARAMETER SENSITIVITY

p = 0.05, λ = 1 p = 0.10, λ = 5 p = 0.15, λ = 10 p = 0.20, λ = 15 Training Time
Accuracy (%) Variance Accuracy (%) Variance Accuracy (%) Variance Accuracy (%) Variance (min / 10000 iter)

h = 32 97.96 0.0004 91.79 0.0071 83.85 0.0321 76.05 0.0739 84’06”
h = 64 98.80 0.0002 93.79 0.0050 87.26 0.0243 80.17 0.0444 83’56”
h = 128 99.32 0.0002 96.15 0.0036 90.70 0.0152 84.43 0.0326 83’39”
h = 256 99.42 0.0002 95.86 0.0036 90.93 0.0170 80.10 0.0430 83’44”
h = 512 99.47 0.0001 96.41 0.0031 90.03 0.0180 83.61 0.0476 85’08”

as the proportionally growing training time, h = 128 is a
best performing network size parameters considering both
the data recover accuracy and training time.

V. CONCLUSION

In this paper, we propose a new deep learning approach
for missing trajectory reconstruction. We develop an iter-
ative linear mapping between original trajectory attributes
and its higher dimensional representation, and then apply
a GRU encoder-decoder network with attention mechanism
to predict the missing data entries. Besides, we use R2 as
a new training objective in order to improve effectiveness
and robustness of the neural network training process. To
evaluate the proposed mechanism, we conducted a series of
case studies on a practical dataset. The simulation results
illustrate the advantage of the proposed approach in both
data recovery accuracy and result stability compared with the
baseline approaches. Additionally, all major data processing
components in the proposed approach contribute to the final
recovery performance. Lastly, we investigate the sensitivity
of the neural network size.

REFERENCES

[1] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “T-drive: Enhancing driv-
ing directions with taxi drivers’ intelligence,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 1, pp. 220–232, Jan
2013.

[2] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding
mobility based on GPS data,” in Proc. International Conference on
Ubiquitous Computing, Seoul, Korea, 2008, pp. 312–321.

[3] F. Lu, Y. Duan, and N. Zheng, “A practical route guidance approach
based on historical and real-time traffic effects,” in Proc. 17th Inter-
national Conference on Geoinformatics, Aug. 2009, pp. 1–6.

[4] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang, “Traffic flow prediction
with big data: A deep learning approach,” IEEE Transactions on
Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, April
2015.

[5] H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li, “Revisiting spatial-
temporal similarity: A deep learning framework for traffic prediction,”
in AAAI, 2018.

[6] J. J. Q. Yu and J. Gu, “Real-time traffic speed estimation with
graph convolutional generative autoencoder,” IEEE Transactions on
Intelligent Transportation Systems, vol. 20, no. 10, pp. 3940–3951,
Oct 2019.

[7] Y. Zheng, “Trajectory data mining: An overview,” ACM Trans. Intell.
Syst. Technol., vol. 6, no. 3, May 2015.

[8] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P.-J. Nordlund, “Particle filters for positioning,
navigation, and tracking,” IEEE Transactions on Signal Processing,
vol. 50, no. 2, pp. 425–437, 2002.

[9] E. Keogh, S. Chu, D. Hart, and M. Pazzani, Segmenting time series:
A survey and novel approach. World Scientific, 2004.

[10] F. Moscheni, S. Bhattacharjee, and M. Kunt, “Spatio-temporal seg-
mentation based on region merging,” IEEE Transactions on Pattern
Analysis & Machine Intelligence, vol. 20, no. 9, pp. 897–915, 1998.

[11] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar
multidimensional trajectories,” in International Conference on Data
Engineering, 2002.

[12] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search
for moving object trajectories,” in Proc. ACM SIGMOD International
Conference on Management of Data, New York, NY, USA, 2005, p.
491–502.

[13] L. Qu, Y. Zhang, J. Hu, L. Jia, and L. Li, “A bpca based missing
value imputing method for traffic flow volume data,” in Proc. IEEE
Intelligent Vehicles Symposium, June 2008, pp. 985–990.

[14] H. Tan, G. Feng, J. Feng, W. Wang, Y. J. Zhang, and F. Li, “A tensor-
based method for missing traffic data completion,” Transportation
Research Part C Emerging Technologies, vol. 28, no. 3, pp. 15–27,
2013.

[15] Z. Liu, S. Sharma, and S. Datla, “Imputation of missing traffic
data during holiday periods,” Transportation Planning & Technology,
vol. 31, no. 5, pp. 525–544, 2008.

[16] G. Shen, C. Zhang, and B. Tang, “Completing truck’s missing
trajectory based on the historical information,” in 2015 6th IEEE
International Conference on Software Engineering and Service Science
(ICSESS), 2015.

[17] X. C. Chen, J. H. Faghmous, A. Khandelwal, and V. Kumar, “Clus-
tering dynamic spatio-temporal patterns in the presence of noise and
missing data,” in International Conference on Artificial Intelligence,
2015.

[18] J. Lv, Q. Li, Q. Sun, and X. Wang, “T-conv: A convolutional
neural network for multi-scale taxi trajectory prediction,” in 2018
IEEE International Conference on Big Data and Smart Computing
(BigComp), Jan 2018, pp. 82–89.

[19] Z. Li, H. Zheng, and X. Feng, “3d convolutional generative adversarial
networks for missing traffic data completion,” in 2018 10th Interna-
tional Conference on Wireless Communications and Signal Processing
(WCSP), Oct 2018, pp. 1–6.

[20] S. O. Şahin, “Sequential regression with missing data using lstm
networks,” in 2019 27th Signal Processing and Communications
Applications Conference (SIU), April 2019, pp. 1–4.

[21] M. Liang, R. W. Liu, Q. Zhong, J. Liu, and J. Zhang, “Neural network-
based automatic reconstruction of missing vessel trajectory data,”
in 2019 IEEE 4th International Conference on Big Data Analytics
(ICBDA), March 2019, pp. 426–430.

[22] Y. Wang, D. Zhang, Y. Liu, and K. Tan, “Trajectory forecasting with
neural networks: An empirical evaluation and a new hybrid model,”
IEEE Transactions on Intelligent Transportation Systems, pp. 1–10,
2019.

[23] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations us-
ing rnn encoder-decoder for statistical machine translation,” 2014,
arXiv:1406.1078 [cs.CL].

[24] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473
[cs.CL].

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” 2014, arXiv:1412.6980 [cs.LG].

[26] J. Zhang, T. He, S. Sra, and A. Jadbabaie, “Why gradient clipping
accelerates training: A theoretical justification for adaptivity,” in Proc.
International Conference on Learning Representations, 2020.

[27] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data
by simplified least squares procedures.” Analytical Chemistry, vol. 36,
no. 8, pp. 1627–1639, 1964.

[28] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W. Y. Ma, “Understanding
mobility based on gps data,” in Proc. Ubiquitous Computing, 10th
International Conference, Seoul, Korea, 2008.

[29] A. C. Harvey, “Forecasting, structural time series models and the
kalman filter,” Cambridge Books, 1991.

[30] H. Akaike, A New Look at the Statistical Model Identification. New
York, NY: Springer New York, 1998, pp. 215–222.

