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ABSTRACT
The electric vehicle (EV) will become one of the ma-
jor forms of conveyance for ground transportation in
the near future. Due to its intrinsic properties, EV
seamlessly bridges the energy and mobility aspects of
the smart city. Recently, the vehicular energy network
(VEN) has been developed and it is capable of convey-
ing energy over a road network by means of EVs. To do
this, certain energy paths need to be properly routed for
transmitting energy from an energy source to a destina-
tion. However, the establishment of energy paths relies
on the underlying vehicular traffic flows, which are gen-
erally uncertain when constructing the energy paths.
This may lead to infeasible energy routes during imple-
mentation. In this paper, we focus on the maximum
energy delivery problem of VEN and develop its robust
routing design based on robust optimization. We per-
form a series of simulations to evaluate the effectiveness
of the robust routing scheme. We also investigate the
sensitivity of the traffic uncertainties and the influence
of the number of constructed energy paths. Simulation
results show that we can cope with various uncertainties
without impairing the energy delivery efficiency signifi-
cantly.

CCS Concepts
•Networks → Network management; •Hardware
→ Reusable energy storage; Smart grid;
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1. INTRODUCTION
With the Internet of things and various information

and communication technologies, a city can manage its
assets in a smarter way, constituting the urban devel-
opment vision of smart city [13]. This facilitates more
efficient use of physical infrastructure and encourages
citizen participation. Many governments have been de-
voting to developing smart cities (nations). Many cities
(nations), like Amsterdam, Barcelona, and Singapore,
have demonstrated the success of the smart city initia-
tives.

Based on [16], smart energy and smart mobility are
among the key aspects of smart city. The electric ve-
hicle (EV) is believed to take a key role in advancing
these technologies. EVs are powered by various energy
sources or the electricity grid. With proper schedul-
ing, a large fleet of EVs can get charged from charging
stations and parking infrastructures [5]. By replacing
the internal combustion engine vehicles with EVs, we
can reduce our reliance on fossil fuels and utilize the re-
newable energy more effectively. The market of EVs is
growing very fast and there will likely be an abundance
of EVs running on the road in the near future [2]. EVs
are also important building blocks to develop intelligent
transportation system [9].

Although the battery capacity of a single EV is small,
an aggregation of EVs can perform as a significant power
source or load, constituting the vehicle-to-grid (V2G)
system. Besides acquiring energy from the grid, EVs,
in V2G, can also support the grid by providing various
demand response [17] and auxiliary services [7]. Many
countries have set up future plans for V2G. For exam-
ple, a large-scale V2G prototype composed of 100 V2G
units was launched in the United Kingdom [15]. NREL
in the United States works on integrating energy sys-
tems, power grid, renewable sources, and EVs to mini-
mize greenhouse gas emissions and other costs [14].

In addition to V2G, EVs can interact with the grid in
other formats. Recently, the vehicular energy network
(VEN) has been developed [6, 8] and it is capable of
transporting a large amount of energy over the road net-
work by means of EVs. Suppose that the road network
are equipped with a number of wireless charging facili-



ties, supported by energy storage as buffer, where those
EVs running over them can be charged and discharged
on the move wirelessly. Consider that an abundance of
EVs run along various vehicular routes based on their
own schedules. Through appropriate charging and dis-
charging, energy can be disseminated in the road net-
work imperceptibly in the “store-and-forward” manner.
With proper routing, energy paths, linked by fragments
of vehicular routes, can be constructed to transmit en-
ergy from an energy source to a destination with the
deliverable energy maximized or the energy loss mini-
mized [10,11]. VEN can complement the power system
by absorbing excessive power from the grid and supply-
ing deficient power to the grid.

The formation for energy paths relies on the traffic
in the road network. The existing VEN routing strate-
gies [10, 11] assume static traffic flows, which may not
be realistic in most situations. Traffic is generally dy-
namic such that the energy paths constructed during
the planning phase may no longer be optimal, or even
become infeasible, for implementation. In this work, we
address this issue with robust optimization [3]. We fo-
cus on the maximum energy delivery problem (MEDP)
of VEN and develop its robust routing scheme. Simu-
lations will show that our robust design can cope with
traffic uncertainties without impairing the energy deliv-
ery efficiency significantly.

The rest of the paper is organized as follows. Sec-
tion 2 describes the VEN system model and introduce
MEDP. In Section 3, we develop the robust formula-
tion of MEDP. We evaluate the performance of robust
routing in Section 4 and conclude in Section 5.

2. SYSTEM MODEL
The system model basically follows [8]. VEN has a

layered structure, composed of the underlaying vehicu-
lar network and the overlay energy network.

2.1 Vehicular Network
Consider that a fleet of EVs participate in VEN. The

vehicular network refers to the system of interconnected
roads where EVs traverse based on their individual travel
plans. The network is modeled by a directed graph
G(N ,A), where N and A are the sets of road junctions
and interconnects, respectively. Each arc a ∈ A is de-
scribed by (tail(a), head(a)), in which vehicles go along
from tail(a) ∈ N to head(a) ∈ N . Certain consecutive
arcs form a vehicular route and a particular route ri
with |ri| arcs is represented by 〈ai1, . . . , ai|ri|〉. We de-

note the nth arc of ri by ri(n) such that ri(n) = ain. We
also describe the sub-route connecting ri(n) and ri(m)
with ri(n,m) = 〈ain, . . . , aim〉. With known traffic, we
can determine a set of vehicular routes, denoted by R,
for G(N ,A).

2.2 Energy Network
Suppose that there are a wireless charging facility

and an energy buffer storage installed at each n ∈ N .
With dynamic (dis)charging technologies [12], a pass-
ing EV can pick up or drop off a “packet” of energy
seamlessly at n. We standardize the size of each energy
packet by w, which should be sufficiently small. Con-
sider that we decide to transmit a certain amount of
energy from ns ∈ N to nt ∈ N . We can construct a set
of energy paths, denoted by P(ns, nt), over VEN. Each
pj ∈ P(ns, nt) is linked by |pj | vehicular sub-routes, i.e.,

pj = 〈rj1(n1,m1), . . . , rji (ni,mi), . . . , r
j
|pj |(n|pj |,m|pj |)〉,

where rji (ni,mi) is the ith sub-route of pj . Note that

tail(rj1(n1)) = ns and head(rj|pj |(m|pj |)) = ns.

It takes time for a vehicle to go from a place to an-
other. Suppose that it takes d(a) seconds to traverse
Arc a on the average. In this sense, to pass through
the sub-route rji (ni,mi), it incurs an average delay of

d(rji (ni,mi)) =
∑
a∈rji (ni,mi)

d(a). Since generally sev-

eral sub-routes make up an energy path, the energy
would experience an average propagation delay dj along
Energy Path pj(ns, nt) as

dj ,
|pj |∑
i=1

d(rji (ni,mi))

=

|pj |∑
i=1

∑
a∈rji (ni,mi)

d(a) =
∑
a∈pj

d(a). (1)

Let f ji be the traffic rate of the ith sub-route of pj(ns, nt)
corresponding to the participating EVs. With packet
size w, the energy transmission rate gj of pj(ns, nt) is

no larger than wf ji for all i = 1, . . . , |pj |. Hence, for all

rji (ni,mi) in pj(ns, nt), we have

gj ≤ wf ji . (2)

A particular arc a may be shared by multiple energy
paths. Let ha be the aggregate vehicular flow of a. For
each a in A, there should be enough EVs supporting the
energy transmissions of the energy paths which share a
and thus we have ∑

j|a∈pj

gj
w
≤ ha. (3)

Wireless energy transfer incurs energy loss. Let 0 ≤
zc ≤ 1 and 0 ≤ zd ≤ 1 be the charging and discharg-
ing efficiencies, respectively. When an EV is wirelessly
charged, a fraction (1− zc) of energy will be lost. Simi-
larly, discharging results in a fraction (1− zd) of energy
loss. Along pj(ns, nt), EVs will experience |pj | times
of charging and discharging. Define z = zczd. Suppose
that xj units of energy need to reach nt along pj(ns, nt),
we should inject

xj

z|pj |
units of energy at ns so as to com-

pensate (
xj

z|pj |
− 1)xj units of energy loss.

Besides the propagation delay, transmitting energy
along pj(ns, nt) also requires the transmission delay of



xj

z|pj |gj
. So the total amount of time required to trans-

fer energy along pj(ns, nt) is dj +
xj

z|pj |gj
.1 If T is the

time window for energy transmission, the amount of
energy transferrable along pj(ns, nt) should be upperly

bounded by (T − dj)z|pj |gj . Thus we have

xj ≤ (T − dj)z|pj |gj . (4)

2.3 Energy Delivery Maximization
Consider that we decide to transmit energy from ns

to nt over G(N , E). Without loss of generality, we de-
note the jth energy paths connecting ns and nt by pj
and the whole set of energy paths by P. By the en-
ergy path construction method given in [10,11], we can
construct P. We are interested in maximizing the to-
tal amount of transferable energy subject to an upper
bound of total energy loss, given by L. We can formu-
late the corresponding deterministic MEDP as follows:

Problem 1 (Deterministic MEDP).

maximize
∑

j|pj∈P

xj (5a)

subject to xj ≤ (T − dj)z|pj |gj , ∀j|pj ∈ P, (5b)

gj ≤ wf ji , ∀i, j|rji (ni,mi) ∈ pj , pj ∈ P,
(5c)∑

j|a∈pj

gj
w
≤ ha, ∀a ∈ A, (5d)

∑
j|pj∈P

(
1

z|pj |
− 1)xj ≤ L, (5e)

xj ≥ 0, gj ≥ 0, ∀j|pj ∈ P, (5f)

where xj and gj are variables while z, |pj |,T , w, L, dj ,

f ji , and ha are system parameters. Problem 1 is in fact
a linear program (LP).

3. ROBUST OPTIMIZATION
Among all parameters, while z, |pj |, T , w, and L

are determined and fixed by the system, dj , f
j
i , and

ha are subject to uncertainties due to traffic. In most
situations, the values of these traffic-related parameters
cannot be known to high accuracy. According to [4], an
illustrative example of LP shows that small perturba-
tions of some parameters can make the nominal opti-
mal solution heavily infeasible. Although the problem
defined in Section 2.3 is just an LP which can be solved
very effectively, the computed solution may not be prac-
tically useful or even infeasible when the traffic data are
realized.

To address this issue, we model those constraints in-
volving dj , f

j
i , and ha in Problem 1 with chance con-

straints. Let βj = z|pj |. Then we have the following
chance constrained optimization problem:
1For various kinds of delays experienced in VEN, the
interested reader may refer to [8].

Problem 2 (Chance Constrained MEDP).

maximize
∑

j|pj∈P

xj (6a)

subject to Pr
{
xj − Tβjgj + d̃jβjgj > 0

}
≤ θ∆,

∀j|pj ∈ P, (6b)

Pr
{
gj > wf̃ ji

}
≤ θ∆,

∀i, j|rji (ni,mi) ∈ pj , pj ∈ P, (6c)

Pr

 ∑
j|a∈pj

w−1gj > h̃a

 ≤ θ∆, ∀a ∈ A,

(6d)

(5e), (5f),

where d̃j , f̃
j
i , and h̃a be the uncertain versions of dj , f

j
i ,

and ha, respectively, and 0 ≤ θ∆ ≤ 1. Problem 2 is the
same as Problem 1 except (6b), (6c), and (6d). (6b)
means that we allow a probability of θ∆ of violating
(5b). Similarly, we have (6c) for (5c) and (6d) for (5d).

For each a ∈ A, we model its uncertain delay as

d̃(a) = d(a) + ξ(a)d̂(a), where d(a), ξ(a), and d̂(a) de-

note the nominal value of d̃(a), an independent random
variable representing its uncertainty, and its positive
constant perturbation, respectively. By (1), the delay

of pj is given as d̃j =
∑
a∈pj [d(a) + ξ(a)d̂(a)]. For all j

such that pj ∈ P, we can write the robust counterpart
of (6b) as

(xj − Tβjgj + βjgj
∑
a∈pj

d(a)) + βjgj
∑
a∈pj

ξ(a)d̂(a) ≤ 0.

(7)

Similarly, we model the uncertain traffic rate as f̃ ji =

f ji + ζji f̂
j
i , where f ji , ζji , and f̂ ji are the nominal value

of f̃ ji , the corresponding independent random variable

and perturbation. For all i and j such that rji (ni,mi)
in pj and pj in P, we can represent (6c) as

gj − ζjiwf̂
j
i ≤ wf

j
i . (8)

With similar ideas, we model the aggregate traffic flow

of Arc a as h̃a = ha + ςaĥa, where ha, ςa, and ĥa are
the nominal value of h̃a, the corresponding independent
random variable and perturbation. For all a ∈ A, (6d)
gives ∑

j|a∈pj

w−1gj − ςaĥa ≤ ha. (9)

We denote the vectors of ξ(a), ζji , and ςa by ξ, ζ, and
ς. Consider that [ξ, ζ, ς] are confined in the uncertainty
set U . To immunize against infeasibility, we aim to find
a feasible solution for any [ξ, ζ, ς] in U . Consider the
notation of projy(U) refers to the projection of U into
y. We construct the corresponding set-induced robust
optimization problem as follows:



Problem 3 (Set-Induced Robust MEDP).

maximize
∑

j|pj∈P

xj (10a)

subject to (xj − Tβjgj + βjgj
∑
a∈pj

d(a))

+ sup
ξ∈projξ(U)

[βjgj
∑
a∈pj

ξ(a)d̂(a)] ≤ 0,

∀j|pj ∈ P, (10b)

gj + sup
ζ∈projζ(U)

[−ζjiwf̂
j
i ] ≤ wf ji ,

∀i, j|rji (ni,mi) ∈ pj , pj ∈ P, (10c)∑
j|a∈pj

w−1gj + sup
ς∈projς(U)

[−ςaĥa] ≤ ha,

∀a ∈ A, (10d)

(5e), (5f).

We consider the box uncertainty set U = {(ξ, ζ, ς) |
|ξ(a)| ≤ ξ, |ζji | ≤ ζ, |ςa| ≤ ς,∀a, i, j|a ∈ rji (ni,mi) ∈
pj ∈ P}. Then Problem 3 becomes

Problem 4 (Box-Uncertain Robust MEDP).

maximize
∑

j|pj∈P

xj (11a)

subject to (xj − Tβjgj + βjgj
∑
a∈pj

d(a))

+ βjgjξ
∑
a∈pj

d̂(a) ≤ 0, ∀j|pj ∈ P, (11b)

gj + wζf̂ ji ≤ wf
j
i ,

∀i, j|rji (ni,mi) ∈ pj ∈ P, (11c)∑
j|a∈pj

w−1gj + ςĥa ≤ ha, ∀a ∈ A, (11d)

(5e), (5f).

4. PERFORMANCE EVALUATION
We evaluate the performance of robust VEN rout-

ing with a series of simulations. We first compare the
energy delivery performance of robust routing with de-
terministic routing developed in [10]. Then we investi-
gate the impact of uncertainty bounds of ξ, ζ, and ς on
the energy delivery efficiency. Finally, we examine the
impact of different numbers of energy paths. We per-
form the simulations on a computer with an Intel Core
i7 CPU at 3.60 GHz and 32 GB RAM. The model is
coded with Python 3, and the optimization problem is
solved by the Gurobi optimization solver [1].

4.1 Robust Optimization Performance
In this test, we study on two grid networks with bi-

directional edges: the 16-node and 25-node networks

s

t

(a) 16-node grid net-
work

s

t

(b) 25-node grid network

Figure 1: Road network test cases.

given in Fig. 1, where s and t refer to the energy source
and destination, respectively. We follow the simulation
configurations of [10] to set up the nominal parameter
settings. All road connections in the networks are 10
km long and the nominal vehicular speed is set to 60
km/h. Thus vehicles need 600 seconds to run through
a road in the network. In both networks, 20 vehicular
routes are randomly generated. For the vehicular flow
of each route, the EV density is set to 0.1 EVs per
second. The energy packet size w is set to 1 kWh and
the energy efficiency for each charging-discharging cycle
z is 0.9. The test spans for 5 hours, i.e., T = 14400
seconds. We assume that the uncertain d̃(a), f̃ ji , and

h̃a may deviate from their nominal values by at most

10%, i.e., d̂(a) = 0.1d(a), f̂ ji = 0.1f ji , and ĥa = 0.1ha.

The uncertainty bounds ξ, ζ, ς are set to one.
We solve the robust Problem 4 and original Prob-

lem 1 on both networks with different energy loss lim-
its L. The simulation results are presented in Tables
1 and 2. It can be observed that the amount of de-
liverable energy increases with L, and then converges
due to the change of constraint tightness with respect
to (1) and (4). When L is small, (5e) is the bounding
constraint that prevents the improvement of objective
function value. However, the other constraints domi-
nate when L gets large, which suppresses the impact of
L on the objective function value.

Moreover, the amount of deliverable energy for (1)
and (4) are identical when L is small (< 500). Mean-
while, robust optimization achieves slightly smaller de-
liverable energy with larger L. This is because in ro-
bust optimization (4), the feasible solution space must
be reduced to immunize against infeasibility due to the
uncertainties. This demonstrates that the robust rout-
ing does not impair the energy delivery efficiency signifi-
cantly while being robust in the presence of uncertainty.

4.2 Sensitivity on Uncertainty bounds
We also investigate the impact of the uncertainty

bounds on energy delivery. To assess the maximum



Table 1: Energy Delivery and Loss on 16-node Network

L
Robust Optimization Original Optimization
Delivery Loss Delivery Loss

1 2.69 1.00 2.69 1.00
100 269.00 100.00 269.00 100.00
200 538.01 200.00 538.01 200.00
500 1221.77 500.00 1259.16 500.00
700 1603.33 700.00 1640.73 700.00
776 1748.33 776.00 1785.72 776.00
777 1750.21 776.99 1787.63 777.00
800 1750.21 776.99 1831.51 800.00
885 1750.21 776.99 1993.67 885.00
886 1750.21 776.99 1994.54 885.46

1000 1750.21 776.99 1994.54 885.46

Table 2: Energy Delivery and Loss on 25-node Network

L
Robust Optimization Original Optimization
Delivery Loss Delivery Loss

1 2.69 1.00 2.69 1.00
100 269.00 100.00 269.00 100.00
200 538.01 200.00 538.01 200.00
500 1196.59 500.00 1233.72 500.00
700 1578.15 700.00 1615.29 700.00
703 1583.87 703.00 1621.01 703.00
704 1585.66 703.94 1622.92 704.00
800 1585.66 703.94 1806.07 800.00
811 1585.66 703.94 1827.06 811.00
812 1585.66 703.94 1828.33 811.67

1000 1585.66 703.94 1828.33 811.67

Table 3: Sensitivity of Maximum Energy Delivery on
Unvertainty Bounds

ς ζ
ξ

0.2 0.5 1.0 2.0 5.0
0.2 5 1944.88 1930.22 1905.79 1856.92 1710.32
0.2 6 1930.42 1915.34 1890.20 1840.76 1695.44
0.2 7 1914.36 1898.81 1872.88 1822.81 1678.91
0.2 8 1879.50 1863.61 1837.13 1786.91 1645.84
0.2 9 1816.45 1801.57 1776.78 1729.07 1592.56
0.5 5 1885.34 1871.13 1847.45 1800.08 1657.96
0.5 6 1873.30 1858.73 1834.46 1786.61 1645.56
0.5 7 1857.24 1842.20 1817.13 1768.66 1629.03
0.5 8 1825.51 1810.11 1784.46 1735.75 1598.72
0.5 9 1762.87 1748.39 1724.27 1677.91 1545.44
1.0 5 1786.11 1772.65 1750.21 1705.34 1570.70
1.0 6 1778.08 1764.38 1741.55 1696.36 1562.44
1.0 7 1762.02 1747.85 1724.23 1678.41 1545.90
1.0 8 1735.52 1720.95 1696.67 1650.49 1520.18
1.0 9 1673.56 1659.76 1636.76 1592.64 1466.91
2.0 5 1587.66 1575.69 1555.74 1515.85 1396.18
2.0 6 1587.66 1575.69 1555.74 1515.85 1396.18
2.0 7 1571.60 1559.16 1538.42 1497.90 1379.65
2.0 8 1555.53 1542.62 1521.10 1479.95 1363.11
2.0 9 1494.95 1482.50 1461.74 1422.11 1309.84
5.0 5 992.29 984.81 972.34 947.41 872.61
5.0 6 992.29 984.81 972.34 947.41 872.61
5.0 7 992.29 984.81 972.34 947.41 872.61
5.0 8 984.25 976.54 963.68 938.43 864.35
5.0 9 957.75 949.64 936.12 910.51 838.63

amount of deliverable energy through robust routing,
we nullify the bounding impact of energy loss by setting
L =∞. In this case, the change of the result is mainly
contributed by the uncertainty bounds. The simulation
settings follows Section 4.1 except for ξ, ζ, and ς, whose
values are set to [0.2, 0.5, 1.0, 2.0, 5.0], [5, 6, 7, 8, 9]2, and
[0.2, 0.5, 1.0, 2.0, 5.0], respectively. 125 combinations of
these three bounds are tested on the 16-node grid net-
work and the results are presented in Table 3. The
larger uncertainty bounds, the less energy can be de-
livered. The results accords with the intuition that the
routing scheme must be feasible for all possible random
cases within the undertainty set U . In addition, we can
observe that the robust optimization is more sensitive
to ς than to ξ while ζ only asserts a small influence.
This is due to the fact that in Problem 4, (11d) is the
bounding constraint in most cases when (5e) is relaxed.

4.3 Subset of Energy Paths
In the previous tests, the small testing networks allow

us to enumerate all energy paths for optimization. How-
ever, in most real-world scenarios, the vehicular road
network and traffic conditions are so complicated such
that it is intractable and inefficient to construct all en-
ergy paths. Thus only a subset of energy paths can be
employed. In this test, we assess the performance of
robust routing on a large grid network with 100 nodes,
in which only a small subset of energy paths are uti-
lized. The simulation configurations are identical to
those used Section 4.1, and the top left and bottom right
nodes are considered as source and destination, respec-
tively. Energy paths of quantity of [100, 200, 500, 1000,
1500, 2000] are randomly generated and the maximum
deliverable energy with respect to various energy loss
limits are examined. The simulation results are de-
picted in Fig. 2.

We can see that the number of energy paths has a
significant influence on the maximum energy delivery
when L is not limiting. In general, VEN can deliver
more energy with more energy paths until it is saturated
at a threshold ( 1500 in most our cases). The reason is
that while each additional energy path provides extra
energy delivery capacity, it still relies on the underlying
EV traffic flow, which is limited. When many energy
paths are employed, multiple energy paths are likely to
share some of the road connections, in which the passing
EVs are shared by these paths.

Moreover, when L involves in the bounding constraint
(L < 1000 in this case), the number of energy paths still
influences the performance. The more energy paths,
the larger amount of energy can be delivered. This
is due to the fact that more energy paths can provide
more options for energy transmission and the energy
efficient paths with less charging-discharging cycles are
more likely to be active.

2The results are the same when ζ ≤ 5. So we only give
those results with ζ ≥ 5.
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Figure 2: Maximum energy delivery with different num-
ber of energy paths utilized.

5. CONCLUSION
The increasing demands of EVs and the various ma-

ture peripheral technologies facilitate the development
of VEN, in which a large amount of energy can be trans-
mitted over the vehicular network by means of EVs. To
transmit energy between an energy source and a des-
tination, energy paths need to be developed. The pre-
vious VEN routing techniques assume static vehicular
traffic flows, which cannot be known to high accuracy
in the planning process. The resultant energy paths
may also be infeasible when the traffic data are real-
ized. To overcome this, we consider uncertain traffic
flows and develop robust routing for VEN. We focus
on maximum energy delivery and formulate the robust
MEDP. We conduct a series of simulations to evaluate
the effectiveness of the robust routing scheme. Simula-
tion results confirm that the robust routing strategies
can manage the traffic uncertainties and the energy de-
livery efficiency is not impaired significantly.
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