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Abstract—Graph-based deep learning models are becoming prevalent for data-driven traffic prediction in the past years, due to their
competence in exploiting the non-Euclidean spatial-temporal traffic data. Nonetheless, these models are approaching a limit where
drastically increasing model complexity in terms of trainable parameters cannot notably improve the prediction accuracy. Furthermore,
the diversity of transportation networks requires traffic predictors to be scalable to various data sizes and quantities, and ever-changing
traffic dynamics also call for capacity sustainability. To this end, we propose a novel adaptive deep learning scheme for boosting
graph-based traffic predictor performance. The proposed scheme utilizes domain knowledge to decompose the traffic prediction task
into sub-tasks, each of which is handled by deep models with low complexity and training difficulty. Further, a stream learning algorithm
based on the empirical Fisher information loss is devised to enable predictors to incrementally learn from new data without re-training
from scratch. Comprehensive case studies on five real-world traffic datasets indicate outstanding performance improvement of the
proposed scheme when equipped to six state-of-the-art predictors. Additionally, the scheme also provides impressive autoregressive
long-term predictions and incremental learning efficacy with traffic data streams.

Index Terms—Traffic prediction, deep learning, capacity scalability, capacity sustainability, intelligent transportation systems, data
mining.

✦

1 INTRODUCTION

R ECENT years have witnessed the gradual adoption of
intelligent transportation systems (ITS) as a vital com-

ponent in modern smart cities along with the rapid urban-
ization process [1]. As an indispensable part of ITS, efficient
traffic prediction systems provide transportation utilities
with continuous road status information for subsequent
traffic scheduling and operations [2], [3]. In support of their
significant societal influence derived from the role of ITS in
urban transportation, both the academia and the industry
are contributing to traffic prediction algorithms aiming to
forecast the traffic speed or flow volume of traffic partic-
ipants in a future period based on current and historical
observations [4].

A majority of research effort in the past decade has been
devoted to data-driven approaches for abstracting latent
patterns behind traffic data [1]. Among the existing data
mining approaches, deep learning models have attracted
remarkable attention due to their capability of modeling
highly complex and non-linear functions, which just accords
with the nature of traffic data [5]. The research community
gradually exploits deeper data correlation with innovative
deep learning models for traffic prediction over the past few
years, embracing recurrent neural networks first for mul-
tivariate time-series learning, then temporal-convolutional
neural networks for spatial-temporal data mining, and more
recently graph-based learning models to learn from traffic
data aligned in non-Euclidean spaces [2]. Along this line of
research, traffic prediction accuracy also advances by incor-
porating more latent information from data [3]. Increasingly
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complicated deep learning models are devised to squeeze
every bit of prediction performance from the traffic data.

Nonetheless, the current development of graph-based
deep learning models is reaching a state where the accuracy
of traffic prediction is saturating regardless of the model
complexity. The state of the arts in the past year have
pushed the number of model parameters to be learned from
data exponentially to the magnitude of millions, yet the
performance gain in terms of relative predictive error is
less than a few percent [6]–[8]. Considering the difficulty of
training huge deep learning models and the corresponding
requirement on the traffic data quantity, it is arguable how
far can we proceed along this way. This challenge of model
complexity is hindering the future development of traffic
prediction approaches.

Granted that further increasing model complexity still
contributed to significant prediction performance, there is
one question that is infrequently asked: is it necessary to
design such complex models to mine traffic data for pre-
diction? As typical deep learning-based traffic predictors
are presented in multi-layered structures, identifying the
optimal number of layers is usually a trial-and-error process,
which may render inferior performance with suboptimal
settings [9]. Even though one particular configuration works
best for an arbitrary set of data, the number may need to
be re-adjusted for others. The learning process converges
slowly with overly-deep models and is subject to overfitting,
while the learning capacity is restricted if the model is
too simple [10]. This open challenge is defined as capacity
scalability for traffic prediction methods. Additionally, the
ordinary prolonged model training time also hinders traffic
predictors to adapt to the evolving traffic dynamics in
the form of traffic data streams [11]. Consistently updat-
ing prediction models with the latest traffic data without
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the heavy re-training from scratch requires model capacity
sustainability, whose research effort is minuscule in current
traffic predictors.

To overcome the research gap and address these chal-
lenges, we propose a novel Traffic Slicing and Adaptive
Learning (TSAIL) scheme for graph-based traffic predictors
to jointly entertain the model complexity, capacity scala-
bility, and sustainability requirements. Particularly, TSAIL
comprises three major modules, namely, time-series slicer,
adaptive traffic predictor, and prediction aggregator. By
slicing the traffic time series along spatial and temporal
horizons, the traffic data entanglement is segregated and
can be effectively captured using smaller models with lower
complexities. Additionally, auxiliary hidden data paths on
each neural layer of the predictor are incorporated and
aggregated by an attention network for the scheme to be
adaptively scaled according to the latent data size. Finally,
TSAIL enables the model training algorithm to discard
dated and obsolete models and train new ones with minimal
effort to incorporate the latest traffic data with a meta-
attention network, so that the traffic predictors are furnished
with capacity sustainability. To summarize, each of these
modules primarily handles one of the aforementioned chal-
lenges, and TSAIL orchestrates the three to improve traffic
prediction based on any graph-based predictors. Note that
the primary objective of this study is not to devise a new
traffic predictor. Instead, we rethink the nature of traffic data
and patterns for traffic data mining and accordingly develop
a universal scheme to be applied to existing and future
graph-based traffic predictors as a performance booster add-
on. The main contribution of this work is as follows:

• We propose a time-series slicing mechanism to utilize
domain knowledge for traffic data disentanglement,
resulting in less challenging data learning tasks.

• We devise an attention-based hidden feature aggre-
gation mechanism to aid traffic predictors adapt to
various data complexities and scales.

• We design an incremental training algorithm to learn
the transient and steady traffic dynamics changes,
making predictor models sustainable.

• Comprehensive case studies are conducted on five
large-scale real-world traffic datasets with six state-
of-the-art graph-based traffic predictors to show the
efficacy of the proposed scheme.

The remainder of this paper is organized as follows.
Section 2 presents a brief literature review on graph-
based traffic prediction and existing efforts on scalabil-
ity/sustainability. Section 3 elaborates on the proposed traf-
fic slicing and adaptive learning scheme with a comprehen-
sive analysis and discussion of the design principle. Sec-
tion 4 introduces a stream data learning mechanism based
on the proposed scheme for capacity sustainability. Section 5
demonstrates the numerical results of case studies with in-
depth interpretation. This paper is concluded in Section 6.

2 RELATED WORK

Graph-based traffic prediction is gaining attention with
the rapid advance of deep learning techniques since their
renaissance in the early 2010s. In this section, we briefly

review the existing state of the arts on graph-based traffic
prediction and take into account existing traffic prediction
partitioning efforts. Interested readers are referred to recent
surveys for thorough investigations of the context [2], [12].

In the past decade, the adoption of traffic monitoring
systems and the produced traffic data in huge quantities
enable advanced data mining techniques to learn the latent
data dependency and thereupon make predictions [1]. These
techniques gradually overwhelm canonical statistical and
machine learning approaches, e.g., Support Vector Regres-
sor [13], that heavily depend on feature engineering created
by domain expertise. In this line of research, deep learning-
based traffic predictors experienced a shift from recurrent
neural networks to convolutional neural networks and,
more recently, to graph learning-based neural networks [14],
[15]. As traffic data is a type of time series continuously
recorded at a semi-fixed frequency, all approaches above
exploit the strong auto-correlation, temporal dependency,
and optionally spatial dependency of traffic data for predic-
tion [3]. Considering that traffic data are typically generated
along transportation networks, which can be intuitively ab-
stracted into graphs, graph-based deep learning approaches
are natural fits to handle such non-Euclidean space data
correlation. Traffic prediction leaderboards are dominated
by graph learning of late — [6]–[8], [16] to name a few.

Despite consistently improving the performance notably
or not, contemporary traffic predictors are reaching a point
where even exponentially increasing model complexity can-
not lead to proper augmentations. Among the various ra-
tionales behind this observation, a prominent cause is that
typical graph-based predictors take the complete chunk of
data for training, which may comprise irrelevant spatial
and temporal information degenerating the prediction [17],
[18]. A straightforward solution is to partition the trans-
portation network into sub-graphs. Consequently, multiple
independent learning models can be parallelly trained and
employed for these sub-graphs. Several approaches have
been proposed utilizing this idea of domain decomposition
if related transportation services are considered, e.g., traffic
assignment [19], [20], network management [21], and travel
time estimation [22]. Nevertheless, the research efforts were
relatively scarce in the context of traffic prediction. Refer-
ence [17] provides a topology-partition-based approach to
dividing huge transportation networks with tens of thou-
sands of nodes into sub-graphs for traffic prediction. Ref-
erence [18] devises a speed-data-driven graph-partitioning
approach to better address the traffic data correlation during
sub-graph construction. This work takes a step further to
consider data division on both the spatial domain as graph
partitioning and the temporal domain as time-series seg-
mentation.

In this work, inspired by the characteristics of traffic data
and existing graph-based traffic predictors, we propose a
novel traffic slicing and adaptive learning scheme based on
the hypothesis that disentangling traffic data by domain
decomposition can effectively reduce the required model
complexity, which in turn contributes to better forecasts. The
proposed scheme overcomes the aforementioned challenges
and can be applied to existing and future graph-based
traffic predictors as an add-on for possible performance
improvement.
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Fig. 1. Architecture of the proposed TSAIL framework for traffic prediction.

3 TRAFFIC SLICING AND ADAPTIVE LEARNING
FOR TRAFFIC PREDICTION

To jointly address the three open challenges for graph-based
traffic prediction as introduced in Section 1, we propose
TSAIL to adaptively learn from the historical traffic data
for prediction. The proposed model differs from existing
deep model-based traffic predictors by adopting relatively-
shallow neural networks and utilizing an easy-to-train ag-
gregation module to develop the final prediction. With a
carefully designed spatial-temporal data slicing mechanism,
the models in TSAIL aim to merely learn one traffic dynam-
ics pattern and learn it well. Additionally, the hidden data
paths in layered predictors enable TSAIL to adapt to various
data slices of different scales, thus achieving model capacity
scalability.

In this section, we first provide the problem statement
with notation definitions. Then, we present an overview of
the proposed TSAIL, with subsequent detailed elaborations
on the constituting components and the rationale behind the
design.

3.1 Problem Definition

The traffic data of a transportation network depicts the
dynamics of traffic flow over time, which can be naturally
denoted by a time series. Let V be the geographic location
of traffic sensors, which can be in the form of induction
loops installed within the pavement, surveillance cameras
along the road, or any other devices that constantly produce
traffic measurement data. Following the common practice,
the connectivity of these sensors — denoted by an edge set
E ⊆ V × V— can be developed according to their pair-
wise Euclidean distance or road connectivity. Consequently,
traffic data is mapped onto a directed graph G(V, E), and
a further A ∈ B|V|×|V| represents the adjacency matrix
derived from E .

Consider the current time t = 0 and a discrete time
span T , the historical traffic data (speed or flow) time-

series is defined by X≤0 = {. . . ,x−2,x−1,x0}, where
xt = {xi,t} ∈ R|V| denotes the traffic data measured at time
t. The objective of traffic prediction is to find a generative
function F(·,ϕϕϕ) such that

X>0 = F(X≤0,ϕϕϕ), (1)

where X>0 = {x1,x2, . . . } and ϕϕϕ is the set of parameters in
F. Typically, data-driven F’s are formulated based on vari-
ous parametric and non-parametric learning models extract-
ing latent traffic knowledge from the history X≤0. Recent
development of such models emphasizes both the spatial
(Euclidean first and then non-Euclidean) and temporal data
correlations. In the proposed TSAIL, we also consider these
two factors with further model capacity scalability and
sustainability designs.

3.2 TSAIL Framework

The design principle of TSAIL follows an intuitive hypoth-
esis that the spatial-temporal traffic data dependency varies
over the day and in different regions in a city. TSAIL adopts
multiple deep learning models that are relatively shallower
than existing solutions to independently learn the correla-
tion. While the capacities are reduced, these models aim at
extracting and extracting well the latent traffic dynamics of
just one small portion of the city scale during the transient
time. This strategy loosely resembles the concept of ensem-
ble learning, where aggregated weak learners contribute to
better model efficiency and performance.

Fig. 1 presents the overview of TSAIL. The proposed
TSAIL framework comprises three major modules, namely,
time-series slicer, adaptive traffic predictor, and prediction aggre-
gator. In the first phase, the historical traffic data is heuris-
tically divided into multiple traffic data “slices” follow-
ing the principle of domain decomposition, each of which
corresponds to a particular period and selected sensors.
TSAIL first slices the data along the time axis to divide
the ever-changing traffic dynamics into diverse periods,
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aiming at reducing the complexity of temporal correlation
within each period. Subsequently, the data in the form of
time-series graphs are further sliced into sub-graphs by the
similarity of sensory data, further alleviating the learning
difficulty of shallow models. To exploit the non-Euclidean
data learning capability of contemporary geometric deep
learning approaches, these similar sensors after slicing goes
through a node connector to establish their connectivity.

In the second phase, each traffic data slice is provided
to a typical deep learning-based layered traffic predictor for
parameter learning. To cope with the scalability challenge,
each hidden layer of the predictor is appended with an in-
dependent traffic data regressor, whose output is combined
and fed into an extra attention network to calculate the
corresponding attention weight. These weights serve as an
“importance” scoring of the layer output for the final sub-
graph prediction. Finally, the third phase utilizes all com-
bined sub-graph predictions and adopts another attention
network for result aggregation.

3.3 Time-series Slicer
Given the historical traffic data X≤0 over time span T , the
primary objective of the time-series slicer is to divide the
data into multiple slices within the temporal and spatial
domain so that the data in each slice have less complex
spatial-temporal data correlation over the complete one.
TSAIL follows the empirical conclusion in [23] that the
spatial dependency of traffic data is typically easier to be
extracted, X≤0 is first sliced along the time axis with a
Temporal Slicer scheme. Particularly, the discrete time span T
is split into multiple overlapping periods. All time periods
are of the same length T and adjacent periods have a time
difference defined by ∆ ≤ T . Therefore, each day in the
history corresponds to ⌈24 h/∆⌉ periods. Considering that
traffic data exhibits different dynamics over weekdays and
weekends (incl. holidays) [24]–[26], we additionally aggre-
gate the corresponding time periods concerning this feature.
The resulting time periods are denoted by T D

t ⊊ T for those
starting from time t of weekdays and T E

t ⊊ T for those
starting from time t of weekends and holidays, respectively.
Finally, the historical traffic data that fall into each T D

t and
T E
t are jointly denoted by XD

t and XE
t , and t can take

N = 2 × ⌈24 h/∆⌉ different values (weekday/weekend
multiplies ⌈24 h/∆⌉ starting times of time periods).

After segregating the time periods, TSAIL further slices
the resulting traffic data in the spatial domain. Intuitively,
predicting time series is simpler with data-driven ap-
proaches using past data that are more correlated. In the
traffic prediction context, we interpret the correlation of
traffic sensors from two aspects, namely, their statistical
correlation and geographical connectivity via the road net-
work. Given an intermediate data slice X

{D,E}
t from the

temporal slicer, the Spatial Slicer scheme first calculates the
cross-correlation between the time-series of any two sensors
i, j ∈ V using absolute Pearson’s correlation coefficient:

ρ
{D,E}
i,j,t =

∣∣∣∣cov(xi,t,xj,t)

σi,tσj,t

∣∣∣∣ , (2)

where cov is the covariance, xi,t = {xi,t, xi,t+1, . . . ,
xi,t+T−1}, and σi,t is the standard deviation of xi,t, re-
spectively. Based on the cross-correlation, additional edges

that represent strong data correlation are added to the
original traffic graph G. For each time period T {D,E}

t , the
sensor pairs (i, j) /∈ E that have the top ζ (edge count)
cross-correlation measures among non-edge sensor pairs
{V × V} \ E are added to E . When all pairs are calculated,
sorted, and optionally included in the graph, each edge
e ∈ E{D,E}

t after the addition is assigned with a weight
equal to its corresponding cross-correlation according to
Eq. (2). The new graph G{D,E}

t (V, E{D,E}
t ) is subsequently

partitioned into K sub-graphs using the k-way graph parti-
tioning algorithm METIS [27] by minimizing the total com-
munications volume. Symbol G{D,E}

k,t is used to represent the

k-th sub-graph during T {D,E}
t .

While it is already possible to aggregate the historical
traffic data of nodes in any G{D,E}

k,t during the corresponding

T {D,E}
t , there is one more step before feeding the data into

a learning model, namely, Node Connector. The idea behind
this scheme is intuitive. Multi-hop spatial correlation among
data can be extracted in the original graph G. However, the
correlation may be discarded during the graph partitioning
process due to possible edge cuts along the correlation hops.
To overcome this issue, we introduce the concept of virtual
node into the partitioned sub-graph G{D,E}

k,t . In particular,

the node set of each G{D,E}
k,t is added with a virtual node,

which is connected to any other nodes i which has one or
more connecting edges (i, j) ∈ E{D,E}

t cut by METIS. This
virtual node also receives input data in the following traffic
prediction step just like other nodes, only that the data are
all zeros to prevent adverse impact on the data learning
process.

3.4 Adaptive Traffic Predictor

With the aforementioned time-series slicer, the traffic graph
is partitioned into multiple sub-graphs G{D,E}

k,t , each of

which corresponds to a particular time period T {D,E}
t .

Contemporary data-driven traffic predictors can utilize the
information to train a learning model and forecast traffic
data. However, modern cities are of different sizes. It is hard
to figure out a unified model architecture to fit all, i.e., traffic
predictors have scalability issues.

In TSAIL, an adaptive traffic predictor is devised to
provide scalability to traffic predictors. Without loss of any
generality, an arbitrary data-driven traffic predictor is with
L hidden layers. Here we do not enforce the use of any
particular models, only that the maximum model capacity
is with L layers considering the computing ability. Typically,
the predictor employs the final feature representation at the
L-th layer as the prediction hL. TSAIL takes a step forward
and utilizes hidden feature representations {h1,h2, . . . ,hL}
of all layers, which are derived by the base traffic predictor.
In particular, independent traffic data regressors fl(·) are
appended to the corresponding representations to transform
the embeddings back to predictions:

fl(hl) = ReLU(wlhl + bl),∀l = 1, 2, . . . , L, (3)

where wl and bl are the regressor weight and bias, re-
spectively. The multiple predictions yielded by L layers are
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aggregated with attention-based pooling to develop the final
prediction:

f(x) =
L∑

l=1

αlfl(hl), (4)

where the attention coefficient for each layered prediction αl

is calculated by an attention network, which is a softmax-
activated shallow neural network whose output denotes
the relative weights of each fl(hl). By training, this atten-
tion network aims to establish the relationship among the
hierarchical traffic regressors. The model training can be
correspondingly achieved with the following loss:

L(xτ ,yτ ) = ℓ(
L∑

l=1

αlfl(hl),yτ ). (5)

The predictive loss ℓ(·, ·) is set following the original traffic
predictor.

When training with sliced traffic time-series, each G{D,E}
k,t

and T {D,E}
t pair corresponds to one adaptive traffic predic-

tor, denoted by ATP
{D,E}
k,t (·). The training data are prepared

according to the particular requirement of the underlying
traffic prediction model. In general, for all τ ∈ T {D,E}

τ ,
historical time-series X<τ including nodal data from G{D,E}

k,τ
is employed as the input xτ of the predictor, and xk,τ =
{xi,τ}i∈V{D,E}

k,τ

is the prediction objective, i.e., yτ in (5).
To accelerate the training of adaptive traffic predictor

and improve the capacity scalability, a layer-wise back-
propagation scheme is devised to substitute the typical
back-propagation which propagates the loss derivatives
from the last layer L. In (5), the derivatives are propagated
from each regressor fl to update layer-wise parameters,
namely,

Θl ← Θl − η∇Θl
ℓ(

L∑
l=1

αlfl(hl),y), (6)

where Θl is the collection of the traffic predictor parameters
in the l-th layer, which also includes the added regressor
parameters wl and bl, and η is the learning rate, respectively.
Following the idea that shallow models converge faster
than deep ones [28], the attention network focus on the
shallow layers at the beginning of training. With the increase
of training data volume, larger attention coefficients are
learned for deeper layers, contributing to capacity scala-
bility. Consequently, the optimal network depth is learned
automatically and adaptively.

3.5 Prediction Aggregator

TSAIL leverages the adaptive traffic predictor to forecast
sub-graph traffic at a particular time. The k predictors
combined can intuitively provide the whole picture of the
prediction. Nonetheless, we argue that predictors trained
for other time periods can provide auxiliary information
to better assist in developing the final prediction. To put it
another way, predictors on G{D,E}

k,t ,∀t ̸= τ may help forecast
t = τ traffic data. Following this principle, we devise a
prediction aggregator to utilize the additional information.
For any arbitrary time τ , the training data ⟨xτ ,yτ ⟩ are

input into ATP
{D,E}
k,t (·),∀t whose output can be combined

to yield N complete traffic predictions. These predictions
are input into another two-layer fully-connected attention
network to adaptively learn the relative importance βt of
each traffic prediction from data. The output of this attention
network

∑N
t=1 βt · ∥Kk=1 ATP

{D,E}
k,t (·) is considered as the

final prediction of TSAIL, and the network can be trained
by reconstruction loss. Note that this prediction aggregator
is optional: without this module, the other two can still
generate complete traffic predictions following the standard
practice of inference. In the case studies, we will empirically
demonstrate the efficacy of this prediction aggregator.

4 MODEL CAPACITY SUSTAINABILITY FOR TRAF-
FIC PREDICTION

Besides the model capacity scalability challenge addressed
in the previous section, another outstanding issue in traffic
prediction is capacity sustainability. It is notable that traffic
data are presented in the form of data streams and are evolv-
ing, resulting in an ever-changing ground truth distribution.
Models trained on previous distributions may experience
a significant performance drop if the changes are ignored.
Re-training the model from scratch is a waste of existing
distilled knowledge on the historical traffic dynamics, yet
re-training with well-trained parameters may experience the
catastrophic forgetting problem.

In TSAIL, we primarily utilize the prediction aggregator
to provide sustainable model capacity for learning traffic
data streams instead of unregulated increases in model
capacity by enlarging its size. Recall that the prediction
aggregator leverages an attention network to “score” the
importance of different traffic predictions, each of which is
developed by a set of adaptive traffic predictors. Indeed,
there is no limitation on the number of predictions the
attention can handle. This makes it possible to adopt new
predictors for new data from the traffic data stream, and
then integrate them into the existing attention mechanism.
Particularly, new adaptive traffic predictors ATP

{D,E}
k,t (·)

can be constructed and trained with newly available data
when re-training the model is deemed necessary, e.g., every
day. This process is independent of the other existing pre-
dictors, and since each one handles a sub-graph, is relatively
lightweight. The trained new predictors, together with the
existing ones, calculate traffic predictions upon being pro-
vided with historical data. Subsequently, all predictions go
through the previously trained prediction aggregator to
develop the final prediction, whose reconstruction loss is
back-propagated through the comprising attention network
to update the parameters. The training continues until the
aggregator performance converges again, which is typically
much faster than training from scratch as the starting one
serves as a pre-trained model. In such a manner, new
information from the traffic data stream can be integrated
timely for prediction.

It can be figured that the above scheme avoids re-
training any adaptive traffic predictors. However, the ag-
gregator is re-trained with predictions from the new pre-
dictors, which may still lead to the catastrophic forget-
ting problem, although on a smaller neural network. To
resolve this issue, we follow recent efforts on the Fisher
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information matrix [29], [30] and modify the loss function
of the aggregator. Considering the nature of time-series
prediction, the output of the aggregator can be defined as
a sample drawn from the likelihood distribution Prϕϕϕ(y|x).
Correspondingly, the empirical Fisher information matrix

Fϕϕϕ = E(x,y)∼D[
∂ log Prϕϕϕ(y|x)

∂ϕϕϕ

∂ log Prϕϕϕ(y|x)
∂ϕϕϕ

T
] ∈ R|ϕϕϕ|×|ϕϕϕ|, where

D is the training data domain. The matrix has three key
properties [31], namely, equivalent to the second-order
derivative of the loss near local minima, easily computable
from first-order derivatives, and guaranteed positive semi-
definite. Therefore, using it as regularization guides the
training algorithm to keep critical network parameters close
to previously learned values, thus alleviating catastrophic
forgetting [10]. We further follow [32] and assume that
neural network parametersϕϕϕ are independent to circumvent
the huge size of Fϕϕϕ. As such, only the diagonal entries of Fϕϕϕ

are calculated and stored, which leads to the following loss
function for the prediction aggregator:

L∗(xτ ,yτ ) = ℓ(
N∗∑
t=1

βt

K∥∥
k=1

ATP
{D,E}
k,t (xτ ),yτ )

+
λ

2

∑
diag(Fϕϕϕ)⊙ (ϕϕϕ−ϕϕϕ∗), (7)

where N∗ is the total number of adaptive traffic predictors
including the new ones and previous N , λ is a weight
parameter describing how close the newly trained model
shall be with the previous one1, and ⊙ is the element-wise
multiplication operation. This gives an effective approach
for the aggregator to adapt to new predictors with the
learned knowledge from the previous ones. The utility
of the prediction aggregator in improving model capacity
sustainability will be illustrated in the case studies.

5 CASE STUDIES

In this work, we propose a novel TSAIL scheme to bring
both scalability and sustainability to graph-based traffic
predictors. We conduct a series of comprehensive case stud-
ies to illustrate the efficacy of TSAIL on six state-of-the-
art predictors with five distinct real-world datasets from
different sources. In particular, we first investigate the per-
formance and efficiency improvements brought by TSAIL
to the predictors. TSAIL-driven performance enhancements
in long-term autoregressive prediction are then assessed.
Subsequently, we carry out a thorough ablation test on the
constituting modules of TSAIL to verify their necessity, and
stream-data-driven traffic prediction is further investigated.
Finally, a hyperparameter test is performed to demonstrate
the sensitivity of the proposed scheme.

5.1 Experimental Configurations

In subsequent case studies, we employ five real-world traffic
speed datasets for performance evaluation, namely, NavInfo
road speed data of Beijing, China and Shanghai, China (NI-
BJ and NI-SH), Hong Kong Real-time Road Traffic data (HK-
RT), and Caltrans Performance Measurement System traffic

1. We empirically set λ to 103. Other values do not significantly
change the model performance in our offline tests.

data in the Bay Area and District 7 (PeMS-BAY and PeMS-
D7) from the respective three data sources. Particularly,

• NI-BJ and NI-SH include proprietary floating car
data of the two metropolises in China from Jan. 2019
to Jun. 2019 with a constant 5min sampling interval.
1569 and 1830 roads (or segments) are covered in
respective datasets, whose adjacency matrices are
derived from the road connectivity information with
a midway-located sensors assumption following the
practice [26], [33], [34].

• HK-RT dataset comprises publicized traffic speed
data of 608 major routes and urban roads in Hong
Kong from Jun. 2021 to Mar. 2022 with a constant
5min sampling interval. The adjacency matrix of
the dataset is generated from the route linking data
published by the same data source.

• PeMS-BAY and PeMS-D7 datasets are developed
from the 325 and 228 traffic sensors in the sampling
area from Jan. 2017 to May 2017 and from May
to Jun. 2012, respectively. Traffic readings are ag-
gregated into consecutive 5min windows. Different
from the other two data sources but in accordance
with the literature [6], [35], pairwise sensor distances
with a thresholded Gaussian kernel are adopted to
construct the default adjacency matrices for the two
datasets.

All datasets are subjected to z-score normalization and are
split in chronological order with a 7:1:2 ratio for model train-
ing, validation, and testing. We adopt the widely recognized
Mean Average Percentage Error (MAPE) and Root Mean
Square Error (RMSE) as the performance metrics in the
sequel. We run the following tests with the implementation
of an environment on nVidia RTX 2080Ti GPUs for neural
network computing acceleration.

Unless otherwise stated, the prediction granularity is set
to 5min using historical data in the immediate past 1 h, i.e.,
12 samples. The length of time periods T = 2h with a time
difference ∆ = 1h. The node-correlation threshold ζ = |E|,
i.e., the number of additional cross-correlation-based edges
is identical to that of connectivity-based ones. The number
of partitions K = ⌈|V|/100⌉ so that each sub-graph has
approximately 100 nodes. The attention networks in the
adaptive traffic predictor and the prediction aggregator
have two fully connected layers, each with 64 nodes. The
adaptive traffic predictor is trained by the respective train-
ing method of the underlying data-driven traffic predictor.
The prediction aggregator is trained by Adam optimizer
with a base learning rate 5× 10−3.

5.2 Quantitative Results
In the case study, we adopt the following six state-of-the-art
graph-based traffic predictors as the base model of TSAIL,
and investigate its respective performance improvement
w.r.t. prediction accuracy and computation cost:

• Graph Wavenet (GWN) [6]: GWN is an end-to-end
graph neural network model for traffic prediction,
which incorporates an adaptive dependency matrix
learned by node embedding for capturing the hid-
den spatial data correlation. An additional stacked
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TABLE 1
Performance Improvement of TSAIL on Graph-based Traffic Predictors

NI-BJ NI-SH HK-RT PeMS-BAY PeMS-D7

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

GWN 10.16% 5.08 11.06% 5.20 8.62% 6.66 2.56% 2.15 4.83% 3.72

+TSAIL 9.62% 4.81 10.36% 4.88 8.01% 6.19 2.48% 2.09 4.52% 3.50
+5.28% +5.23% +6.28% +6.23% +7.02% +7.11% +3.03% +2.85% +6.42% +5.96%

+TSAIL/S 9.70% 4.86 10.44% 4.91 8.10% 6.26 2.51% 2.10 4.55% 3.52
+4.48% +4.44% +5.58% +5.65% +5.97% +5.99% +2.11% +2.35% +5.77% +5.37%

GMAN 10.10% 5.06 10.75% 5.05 9.57% 7.39 4.12% 3.46 7.00% 5.42

+TSAIL 9.22% 4.61 9.80% 4.60 8.82% 6.82 3.85% 3.23 6.50% 5.03
+8.70% +8.85% +8.80% +8.82% +7.85% +7.73% +6.54% +6.53% +7.09% +7.25%

+TSAIL/S 9.30% 4.66 9.89% 4.64 8.90% 6.88 3.90% 3.27 6.58% 5.10
+7.97% +7.90% +7.99% +7.96% +7.01% +6.88% +5.35% +5.39% +5.97% +5.95%

STFGNN 9.42% 4.73 9.92% 4.65 6.92% 5.34 2.36% 1.98 5.23% 4.03

+TSAIL 8.94% 4.47 9.43% 4.43 6.76% 5.22 2.26% 1.90 4.93% 3.81
+5.19% +5.39% +4.94% +4.82% +2.32% +2.36% +4.20% +4.22% +5.71% +5.52%

+TSAIL/S 9.03% 4.53 9.51% 4.47 6.83% 5.28 2.30% 1.93 4.96% 3.83
+4.19% +4.23% +4.07% +4.02% +1.25% +1.08% +2.67% +2.73% +5.11% +4.96%

T-GCN 10.30% 5.16 10.78% 5.07 9.02% 6.98 3.65% 3.07 6.94% 5.37

+TSAIL 9.51% 4.77 9.79% 4.60 8.59% 6.65 3.45% 2.90 6.45% 4.98
+7.68% +7.68% +9.16% +9.27% +4.74% +4.70% +5.51% +5.65% +7.07% +7.28%

+TSAIL/S 9.59% 4.80 9.92% 4.66 8.67% 6.70 3.49% 2.93 6.52% 5.03
+6.94% +6.93% +7.97% +7.96% +3.93% +4.00% +4.51% +4.70% +6.03% +6.28%

GAMCN 9.78% 4.89 10.10% 4.75 7.58% 5.86 2.43% 2.04 4.77% 3.69

+TSAIL 9.19% 4.61 9.85% 4.63 7.26% 5.61 2.32% 1.95 4.68% 3.62
+6.05% +5.81% +2.49% +2.52% +4.19% +4.24% +4.35% +4.33% +1.94% +1.90%

+TSAIL/S 9.29% 4.65 9.94% 4.67 7.32% 5.67 2.34% 1.97 4.76% 3.67
+4.94% +4.94% +1.57% +1.64% +3.36% +3.32% +3.63% +3.55% +0.27% +0.59%

STSSN 10.35% 5.18 10.97% 5.16 8.38% 6.47 2.61% 2.19 5.08% 3.94

+TSAIL 9.56% 4.80 10.36% 4.87 8.13% 6.29 2.50% 2.10 4.73% 3.65
+7.60% +7.43% +5.60% +5.63% +2.94% +2.87% +4.10% +4.12% +6.99% +7.33%

+TSAIL/S 9.69% 4.85 10.46% 4.91 8.19% 6.33 2.53% 2.13 4.77% 3.68
+6.38% +6.51% +4.71% +4.75% +2.29% +2.29% +2.99% +3.04% +6.21% +6.61%

delated 1D convolution component is also utilized
to exponentially grow the receptive field for long
sequence data mining.

• Graph Multi-attention Network (GMAN) [7]: GMAN
adopts an encoder-decoder structure consisting of
multiple spatio-temporal attention blocks to exploit
the spatio-temporal characteristics of traffic dynam-
ics. A transform attention layer is devised to directly
model the historical and future time step correlation,
rendering an attenuated error propagation issue for
multistep predictions.

• Spatial-Temporal Fusion Graph Neural Networks
(STFGNN) [8]: STFGNN employs a data-driven
method to generate temporal graphs for compensat-
ing missing but genuine data correlations that spatial
graphs cannot reflect. A fusion operator on multiple
spatial and temporal graphs is proposed to learn the
hidden spatial-temporal dependencies at different
time periods in parallel.

• Temporal Graph Convolutional Network (T-GCN)
[16]: T-GCN captures the spatial and temporal de-
pendencies in traffic data by an integrated GCN and

gated recurrent unit module, in which the complex
topological structures and dynamic changes of traffic
can be exploited for traffic forecasting.

• Graph and Attentive Multi-Path Convolutional Net-
work (GAMCN) [36]: GAMCN devises a variant
of graph convolutional network and embed road
network indices into a latent space, and develops a
multi-path convolutional neural network to exploit
the joint impact of past traffic conditions to future.

• Spatio-Temporal Sequence-to-Sequence Network
(STSSN) [37]: STSSN employs an encoder-decoder
framework with convolution and diffusion modules
to capture time-varying node representations
for daily and weekly traffic patterns, utilizing
dilated causal convolution for short-term temporal
correlations and an encoder-decoder attention
module to address long-term temporal correlations
and mitigate error propagation.

For the first four base models, we utilize the published
source code provided in the respective literature with mi-
nuscule non-algorithmic changes to adapt to TSAIL, and
the latter two models are implemented according to the
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Fig. 2. Relative training and inference time of base models, +TSAIL, and
+TSAIL/S on NI-BJ dataset. The latter two can be executed parallelly
where all base models are trained in parallel, or sequentially where
models are trained in a sequence. The training and inference times of
the base models are set to 100%.

respective publication. The hyperparameters are configured
according to the suggestions listed in the literature. In Ta-
ble 1, we summarize the prediction accuracy of base models
and the performance variation led by incorporating TSAIL,
labeled by “+TSAIL”. Note that the relative performance
among the base models is not a primary focus. We are
more interested in investigating whether TSAIL can bring
performance improvements and to what extent if any.

From the comparative results presented in the table, it
is clear that TSAIL can positively affect the performance of
all investigated graph-based traffic predictors. In particular,
an average 5.66% prediction error reduction to MAPE and
RMSE can be obtained by introducing TSAIL to all predic-
tors on all datasets. This statistical summary of raw traffic
prediction results indicates that the proposed TSAIL effec-
tively disentangles the traffic prediction task considering the
domain-specific spatial-temporal dependency. Additionally,
an interesting conclusion can be developed from the result
that not all datasets are equal for TSAIL: more significant
improvements are introduced to those “harder” ones. No-
tably, NI-BJ and NI-SH witness 6.75% and 6.21% MAPE
boost across all predictors compared to PeMS-BAY’s 4.62%,
respectively. We hypothesize that as PeMS-BAY contains
sensors installed along the major highway in Bay Area,
the traffic is primarily free-flow and is less convoluted
than urban ones, which are the cases for NI-BJ and NI-
SH. As a result, the utilized time-series slicer effectively
breaks down the relatively weak spatial-temporal data cor-
relations with domain knowledge. The slices require much
less model capacity for the predictors to exploit the strong
but diverse data dependencies, rendering notably improved
predictions.

To further reveal the efficacy of TSAIL with small models
on traffic prediction, we change the hyperparameters of base
predictors to reduce the volume of trainable parameters.
Specifically, GWN halves the total number of layers from the

default eight to four, and the number of filters from 32 to 16;
GMAN employs two attention blocks, each with four atten-
tion heads; STFGNN reduces to two graph convolution lay-
ers with 32 filters; and T-GCN possesses 128 hidden neurons
in each layer; GAMCN uses 32-dimensional latent space
and 15min slots in time-of-day embedding; STSSN follows
GWN to halve the total number of layers and reduces the
number of attention heads to four. This scheme is labeled by
“TSAIL/S” for TSAIL with small models, and the respective
performance is also summarized in Table 1. The results
imply that, although not as superior as full-sized TSAIL,
TSAIL/S can still introduce more precise traffic predictions
over the base predictors with comparable total model size.
An average 4.71% MAPE improvement is developed over
all test cases. Additionally, the training and inference speed
boost can be observed from the training and inference times
as shown in Fig. 2, and the models’ FLOPs, where GWN’s
are reduced from 1.460 × 109 to 4.079 × 108, GMAN’s
are reduced from 2.335 × 109 to 4.452 × 108 STFCNN’s
are reduced from 2.334 × 109 to 7.411 × 108, TGCN’s are
reduced from 9.943 × 107 to 2.494 × 107, GAMCN’s are
reduced from 9.426 × 109 to 3.430 × 109, and STSSN’s are
reduced from 2.074 × 109 to 8.529 × 108. It is true that the
alleviation of model computation footprints is caused by
the shrinkage of model sizes, yet TSAIL enables the modi-
fication and provides even better aggregated performance.
This case study reveals an alternative usage of TSAIL for
traffic prediction performance boost. Under the cases where
multiple deep models can be trained parallelly, full-sized
TSAIL can achieve the best overall prediction accuracy with
less parallel training time. For serial-only training scenarios,
notably reducing the base model size can still obtain better
performance with TSAIL. To go one step further, it is pos-
sible to adjust base model hyperparameters to discover an
optimal strategy for the trade-off between model training
speed and prediction accuracy. This is a promising future
research topic and automated machine learning techniques
can be applied.

While TSAIL can effectively be considered as an en-
semble of adaptive traffic predictors, its design inherently
bestows a lightweight advantage over typical ensemble
predictors. Although it may seem plausible to form an
ensemble by combining multiple base models (e.g., GWN)
with the TSAIL prediction aggregator to merge individual
outputs, our offline experiments indicate that the large num-
ber of full-fledged base models employed in this mixture-
of-expert model makes training nearly intractable. Indeed,
attempting to fit the model parameters and gradient infor-
mation for the numerous base models on the available GPUs
is unfeasible. In an attempt to address this challenge, we
conducted experiments with a variant of such an ensemble,
involving sequentially and asynchronously training the base
GWN models and the aggregator using the NI-BJ dataset.
Subsequently, predictions from this ensemble were tested
against those from a single GWN model using Wilcoxon
rank sum tests on the null hypothesis that the GWN ensem-
ble performs similarly to the standalone GWN model. The
statistical test results at a 95% significance level, indicate that
these two approaches show no noticeable difference. This
finding underscores the advantage of the proposed TSAIL
framework, demonstrating its efficacy when compared to
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general ensemble approaches.

5.3 Autoregressive Prediction

All statistical findings from earlier tests are based on predic-
tions for the following five minutes. In practice, transport
operators may adopt an autoregressive approach that uses
predictions from previous time instances as input to predict
the next ones. This approach inevitably accumulates fore-
cast errors when the prediction horizon expands, rendering
degrading model performance over time. Notwithstanding,
we argue that the proposed TSAIL decomposes the com-
plex spatial-temporal data correlation for models to exploit
so that the degradation is attenuated. We conduct an au-
toregressive prediction test in this subsection and present
empirical support for the aforementioned hypothesis.

Fig. 3 depicts the MAPE and RMSE trends of TSAIL(/S)
on the six base predictors with all investigated datasets. In
the figure, the horizontal axis stands for the time horizon
of prediction, ranging from 5min to 60min with a constant
5min interval. Hence, the slopes of metric curves indicate
the rate of performance degradation over time, i.e., the less
tilt the better. From the statistical results, several conclusions
can be drawn. In particular, all tested approaches — with
or without TSAIL — experience error accumulation due
to the autoregressive prediction nature yet with different
strengths. While the best-performing base predictors are
not identical for all datasets, incorporating TSAIL always
introduces performance improvements. Additionally, the
degree of improvements generally are expanding over time,
which can be observed from the increasing performance
gap along the prediction horizon. The average MAPE im-
provement obtained by TSAIL on each of the five datasets
is 6.75%/6.21%/4.85%/4.62%/5.87% for 5min-ahead pre-
dictions, respectively. The improvements are almost dou-
bled to 10.58%/8.22%/8.62%/8.76%/7.45% when 30min-
ahead predictions are generated and are constantly growing
to 11.91%/9.46%/9.67%/9.47%/8.59% for 60min-ahead
ones. The result implies that TSAIL effectively weakens the
effect of predicting error accumulation and in turn helps
graph-based traffic predictors better accommodate long-
term traffic prediction tasks.

5.4 Ablation Study

Section 3 elaborates on the modular design of TSAIL, whose
components are depicted in Fig. 1. While previous tests
demonstrate notable performance improvement brought by
TSAIL on graph-based predictors, it is worth investigating
which constituting components of the model contribute
most to the improvement. In this subsection, we present
four ablation variants of TSAIL and TSAIL/S to empirically
evaluate each component’s necessity. GWN is used as the
base traffic predictor and offline preliminary tests show
that all other base approaches demonstrate highly similar
performance variations.

Table 2 summarizes the model performance of the four
variants on GWN with TSAIL and TSAIL/s. Particularly,

• “-AGG” removes the final prediction aggregator
module from TSAIL. In this variant, each sub-graph
is predicted once via the adaptive traffic predictor.
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Fig. 3. Performance of base models, +TSAIL, and +TSAIL/S with length-
ening prediction horizons on five datasets.
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TABLE 2
Performance of TSAIL Variants on GWN

NI-BJ NI-SH HK-RT PeMS-BAY PeMS-D7

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

GWN 10.16% 5.08 11.06% 5.20 8.62% 6.66 2.56% 2.15 4.83% 3.72
+TSAIL 9.59% 4.80 10.36% 4.88 8.01% 6.19 2.48% 2.09 4.52% 3.50

-AGG 9.66% 4.83 10.40% 4.89 8.06% 6.23 2.50% 2.10 4.55% 3.52
−0.73% −0.73% −0.31% −0.19% −0.55% −0.67% −0.83% −0.62% −0.58% −0.51%

-ADP 9.66% 4.85 10.48% 4.93 8.08% 6.24 2.52% 2.12 4.56% 3.52
−0.82% −1.01% −1.09% −1.04% −0.84% −0.86% −1.43% −1.25% −0.96% −0.68%

-TSS 9.76% 4.89 10.57% 4.97 8.14% 6.29 2.53% 2.13 4.60% 3.55
−1.80% −1.84% −2.02% −1.97% −1.59% −1.65% −2.03% −1.91% −1.89% −1.56%

-VTN 9.64% 4.82 10.42% 4.89 8.05% 6.21 2.49% 2.09 4.54% 3.50
−0.56% −0.52% −0.51% −0.34% −0.42% −0.44% −0.24% −0.23% −0.45% −0.05%

GWN 10.16% 5.08 11.06% 5.20 8.62% 6.66 2.56% 2.15 4.83% 3.72
+TSAIL/S 9.68% 4.85 10.44% 4.90 8.10% 6.26 2.51% 2.10 4.55% 3.52

-AGG 9.77% 4.88 10.51% 4.94 8.16% 6.30 2.53% 2.12 4.59% 3.54
−0.92% −0.62% −0.72% −0.74% −0.69% −0.61% −0.77% −1.06% −0.82% −0.53%

-ADP 9.78% 4.89 10.54% 4.95 8.19% 6.34 2.53% 2.13 4.59% 3.55
−1.04% −0.79% −0.96% −1.01% −1.07% −1.20% −1.09% −1.40% −0.88% −0.89%

-TSS 9.88% 4.95 10.62% 4.99 8.28% 6.40 2.55% 2.14 4.68% 3.61
−2.08% −2.07% −1.76% −1.75% −2.12% −2.16% −1.78% −2.11% −2.76% −2.55%

-VTN 9.72% 4.87 10.48% 4.92 8.15% 6.29 2.52% 2.12 4.58% 3.54
−0.44% −0.29% −0.38% −0.27% −0.59% −0.49% −0.52% −0.79% −0.71% −0.60%

The results are directly concatenated without post-
processing adjustments.

• “-ADP” discards the layer-wise regressor and the
subsequent attention-based pooling in the adaptive
traffic predictor module. The last-layer output of
GWN is considered final in this module.

• “-TSS” drops the time-series slicer module of TSAIL
so that the GWN in the adaptive traffic predictor
accepts complete time series from all nodes in the
transportation network. This variant is conceptually
identical to an attention-based ensemble without
spatial-temporal decomposition.

• “-VTN” scraps the virtual nodes added to METIS
sub-graphs for preserving multi-hop spatial correla-
tion. By abandoning these nodes, this variant may
have isolated sub-graphs for one GWN.

Besides the absolute MAPE and RMSE obtained by each
variant, the relative performance deviation in percentage
from TSAIL and TSAIL/S are also presented for better
comprehension.

The comparison indicates that all three major mod-
ules in TSAIL contribute to performance improvement,
although their importance is not identical. On average,
0.60%/0.81%/1.16% MAPE degradation is observed by
removing the prediction aggregator, adaptive traffic predic-
tor, and time-series slicer modules, respectively. The vir-
tual nodes in the time-series slicer also provide an aver-
age 0.98% MAPE improvement. Furthermore, the results
also imply that these modules are conjugated in terms of
spatial-temporal dependency decomposition and exploita-
tion: the inter-correlation among the modules also gives a
share of the average 6.19% MAPE improvement consider-
ing that they alone add up to 3.55% only. Finally, reduc-
ing base predictor capacity (TSAIL/S) does not diminish

their merits. Indeed, MAPE gaps are slightly enlarged to
0.78%/0.90%/1.29%/1.10%, respectively. This is due to
that the smaller model capacities of traffic predictors rely
more on the fine spatial-temporal decomposition provided
by TSAIL modules, and layer-wise regression and attention-
pooling help them adaptive select the optimal network
depth by learning the data.

5.5 Training with Data Stream

In Section 4, we present a TSAIL-based traffic predictor
training scheme with streaming data, so that the underly-
ing deep models are consistently updated with the latest
data reflecting the ever-changing traffic dynamics. In this
subsection, we investigate the efficacy of this scheme in
improving model sustainability. Same as Section 5.4, GWN
is selected to be the base traffic predictor. Vanilla GWN,
+TSAIL, and +TSAIL/S flavors all employ data of the first
month from datasets NI-BJ and HK-RT for model warm-
up. Notwithstanding, the latter two both updates the model
parameters every day with the immediate latest ground
truth in the past day with the stream learning scheme in
Section 4. It is acknowledged that the comparison is not
a fair one as TSAIL variants employ more training data
in the model, which should lead to better performance by
intuition. The case study is instead more an illustration of
whether stream learning eliminates potential model aging
as intended.

The simulation results are depicted in Fig. 4, in which the
day-average MAPE of the three tested models and schemes
are presented with their respective 7-day moving average
plotted for better comprehension, labeled by “@MA7”. From
the comparison, it can be found that model aging is indeed
a notable issue in GWN, as the prediction performance
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Fig. 4. Performance of GWN, +TSAIL, and +TSAIL/S learning from data stream.

gradually degenerates with time. This reflects the neces-
sity of constantly re-training traffic predictors to cope with
changing traffic dynamics. Meanwhile, both TSAIL variants
demonstrate quite stable performance variations during the
tested horizon. Minuscule MAPE degradation is developed
by comparing the prediction performance at the beginning
and end of the horizons for both datasets. This observation
reveals that TSAIL with stream learning is a highly com-
petitive method for handling both the model accuracy and
sustainability challenges. The scheme effectively reduces
the frequency of model re-training from scratch — or even
obviates the need — so that the overall computation can be
alleviated thanks to the unique prediction aggregator design
in TSAIL.

5.6 Hyperparameter Sensitivity

In the proposed TSAIL scheme, a few hyperparameters are
adopted to control the behavior of the time-series slicer and
prediction aggregator, namely, time slicing parameters T
and ∆ (default 2 h and 1 h), cross-correlation edge count
ζ (default |E|), number of sub-graphs K (default ⌈|V/100|⌉),
and neuron count in attention networks (default two layers
with 64 each). In this subsection, we carry out a series of
hyperparameter tests to examine the sensitivity of TSAIL on
them. Multiple values of each hyperparameter are tested on
GWN+TSAIL(/S) and NI-BJ dataset. All other simulation
configurations are set identical to previous case studies.

We first discuss the influence of changing the time
horizon slicing parameter, i.e., T and ∆ first intro-
duced in Section 3.3. Besides the default value tuple,
we further test the GWN performance with (T,∆) ∈
{(1 h, 0.5 h), (4 h, 2 h), (8 h, 4 h)}. The simulation results are
presented in Fig. 5. A general conclusion can be developed
from the plot that TSAIL is not notably sensitive to the
length of time slices. While the default (2 h, 1 h) is pre-
ferred by the test, changing the values leads to less than
2% performance deviations in one-step predictions. This
observation can be credited to the outstanding time-series
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Fig. 5. TSAIL sensitivity to hyperparameter tuple (T,∆).
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Fig. 6. TSAIL sensitivity to hyperparameter ζ.

learning capability of the base model, i.e., GWN. Nonethe-
less, we hypothesize that further shrinking or expanding the
time slices would eventually undermine the TSAIL efficacy.
An adaptive time slicing scheme that considers the traffic
dynamics can be the answer to time slicing, which is among
the future directions of this work.

We further present the sensitivity of the other two spa-
tial slicing parameters, i.e., ζ and K introduced in Sec-
tion 3.3. The summarized performance of ζ ∈ {⌈|E/4|⌉,
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⌈|E/2|⌉, |E|, 2|E|} and K ∈ {⌈|V/25|⌉, ⌈|V/50|⌉, ⌈|V/100|⌉,
⌈|V/200|⌉} are depicted in Fig. 6 and Fig. 7, respectively.
Increasing ζ renders more node-correlation edges added
during the spatial slicing step, and decreasing K (left to
right in the legend of Fig. 7) reduces the number of sub-
graphs. The results indicate that adding node-correlation
edges to sub-graphs typically improves the overall model
performance, albeit the gain saturates at a particular count
(|E| in our case). In the meantime, TSAIL is quite tolerant
of the total number of sub-graphs as long as the local
nodal connectivity is guaranteed, i.e., sufficient nodes exist
in each sub-graph. Apart from extreme values for either
hyperparameter, TSAIL develops satisfactory performance
on prediction accuracy, and we recommend the default |E|
and ⌈|V/100|⌉ as a general setting for typical prediction
models and datasets.

Finally, TSAIL adopts a two-layered fully connected neu-
ral network as the attention network in the adaptive traffic
predictor and the prediction aggregator. The objective of this
network is to combine predictions developed from multiple
base predictors and generate the final one. We also test two
other structures as alternatives to the attention network with
one layer of 128 neurons and two layers of 128 neurons
each, respectively, where the results are demonstrated in
Fig. 8. From the comparison, it can be concluded that TSAIL
is not sensitive to the attention network structure as long
as sufficient non-linearity can be provided, i.e., two or more
layers are preferred. Considering that the network training
time is proportional to the model capacity defined by the
number of layers and neurons, the default 64+ 64 setting is

favored over other tested variants.

6 CONCLUSIONS

In this paper, we propose a traffic slicing and adaptive
learning scheme to provide scalable and sustainable data
learning for graph-based traffic predictors. The proposed
scheme aims at addressing the current low model complex-
ity efficiency challenge while resolving the difficulty in de-
termining the optimal learning model size and integrating
the live traffic data stream. By adopting a unique time-series
slicing module, the proposed TSAIL avoids the common
practice of enhancing prediction accuracy via increasing the
model complexity but instead breaks down the big predic-
tion task into exponentially smaller ones handled by simple
predictors. The subsequent adaptive traffic predictor further
employs layer-wise hidden data paths to enable predictors
to adaptively select model depths, leading to model capacity
scalability. Finally, an attention-driven prediction aggregator
resembles the principle of ensemble learning for prediction
calibration and allows for a novel stream data learning
algorithm tailor-made for the scheme.

To evaluate the efficacy of the proposed scheme, we
conduct a series of comprehensive case studies on five real-
world datasets from different data sources. The simulation
results indicate that an average 6.19% prediction error
reduction can be achieved over the existing state of the
arts. Considering that the scheme serves as an add-on to
current and future models, TSAIL is a universal perfor-
mance booster for graph-based traffic predictors. Further,
the case studies also reveal that the scheme can provide
better autoregressive long-term predictions and incorporate
traffic dynamics changes lively with traffic data streams.
A set of hyperparameter tests are also carried out to illus-
trate the impact of model hyperparameters, and to develop
guidelines for selecting TSAIL parameters.

In the future, we plan to investigate advanced multitask
learning techniques to further alleviate the computation ef-
fort of training multiple models. Futher, recent development
of traffic predictors that incorporates abnormal/incident
data has the potential of being integrated with TSAIL for
better all-condition practicality. We look forward to follow-
up research efforts on general schemes for boosting traffic
predictor performance.
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