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Abstract— GPS trajectories serve as a significant data source
for travel mode identification along with the development of
various GPS-enabled smart devices. However, such data directly
integrate user private information, thus hindering users from
sharing data with third parties. On the other hand, existing iden-
tification methods heavily depend on the respective manual travel
mode annotations, whose production is economically inefficient
and error-prone. In this paper, we propose a Semi-supervised
Federated Learning (SSFL) framework that can accurately
identify travel modes without using users’ raw trajectories data
or relying on notable data labels. Specifically, we propose a new
identification model named convolutional neural network-gated
recurrent unit model in SSFL to accurately infer travel modes
from GPS trajectories. Second, we design a pseudo-labeling
method for the clients to set pseudo-labels on their local unlabeled
dataset by using a small public dataset at the server. Furthermore,
we adopt a grouping-based aggregation scheme and a data
flipping augmentation scheme, which can boost the convergence
and performance of the proposed framework. Comprehensive
evaluations on a real-world dataset show that SSFL outper-
forms centralized semi-supervised baselines and is robust to the
non-independent and identically distributed data commonly seen
in practice.

Index Terms— Travel mode identification, GPS trajectory,
federated learning, deep learning, semi-supervised learning.

I. INTRODUCTION

DATA is considered the new oil, as it is the fuel power-
ing Artificial Intelligence (AI) and creates tremendous

value for many domains from business activities to scientific
research [1]. AI technologies have given new vitality to all
walks of life and spawned a series of emerging applications,
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especially data-driven Intelligent Transportation System (ITS)
applications [2]–[4]. For example, AI-based travel mode iden-
tification applications is an indispensable component of ITS
[5], [6], which can enable governments, companies, and insti-
tutes to understand human behaviors and urban management
better and planning [3], [7], [8]. Therefore, in this paper,
we focus on studying how AI technology can empower travel
mode identification applications in ITS.

For data-driven travel mode identification applications,
the development of advanced data collection technologies in
GPS-enabled smartphone devices has provided a new oil for
research, i.e., a large number of user private trajectory data
composed of GPS records [5], [9], [10]. These trajectories
provide a path for the development of novel travel mode
identification techniques [11], [12]. Generally, using GPS
trajectories for travel mode identification comprises three
steps. First, third-party entities directly collect private GPS
trajectories data and upload them to a cloud server. Second,
engineers use data mining and feature engineering methods
to extract motion attributes (e.g., speed) of the collected data.
Third, supervised centralized machine learning methods are
adopted to perform the final identification [13]–[17]. Such a
method has achieved great success in the research of travel
mode identification.

However, in most cases, putting together a labeled dataset
for a given travel mode identification task is a time-
consuming, expensive, and complicated endeavor [18]. It gen-
erally requires a large amount of GPS trajectory as well
as real ground-truth travel mode label information to train
high-quality identification models [13], [14], [19] and may
involve soliciting data from different entities [20], [21]. On the
other hand, GPS trajectories information is closely related to
user privacy, which makes it impractical for third-party entities
to directly upload or share raw data to the server. In practice,
the General Data Protection Regulation (GDPR) [22] does not
allow entities to use data sharing to build powerful AI models.
This means that the data sharing scheme cannot be directly
used in the construction of the traffic travel mode identification
model because it seriously violates the user’s data privacy
rights [23]–[25]. Therefore, we need to re-think about how
to obtain the “right” data when much of the attention in AI
has been focused on how to best leverage an existing data
source and build a powerful model from that.

In a distributed learning community, the question of “how to
get the right data” is solved by designing a privacy-preserving
AI framework: different clients (or devices) jointly train a
shared global model without sharing the raw data [1], [18].
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Fig. 1. Overview of the semi-supervised federated learning travel mode identification system. The clients collect raw GPS data without travel mode
annotations and perform data processing. The server collects raw GPS data when privacy permits and annotate them, then preprocessing and augment data.
Finally, the server and the client collaboratively train a DNN model for travel mode identification.

Furthermore, in the machine learning community, researchers
generally use the semi-supervised learning paradigm [26]
to respond to the lack of real ground-truth issues. There-
fore, inspired by the above techniques, we design a novel
Semi-supervised Federated Learning (SSFL) framework to
bridge the above research gap. Specifically, we consider a
more realistic scenario whose sketch is illustrated in Fig. 1,
in which the cloud server holds a small privacy-permitted
dataset with travel mode labels, and users distributedly and
privately possess their unlabeled trajectories data with personal
privacy. In our SSFL settings, travel model identification still
faces the following challenges:
• Lack of Labeled data: Existing travel mode identification

approaches and the applications it spawned are based on
an impractical assumption: all clients hold a precisely
labeled dataset. However, it is difficult to guarantee that
each client holds such data in practice. While the clients
can generate much data, they are typically unincentivized
to also develop data annotations. Therefore, how to max-
imize the use of labeled data on the server and unlabeled
data on the client to optimize the performance of the
classification model is one of the challenges we face in
this work.

• Privacy Protection: While the clients collect a large
amount of data, due to privacy concerns and legal supervi-
sion, the server cannot directly access or obtain the client
data. Hence, we need to find a good solution to construct
a travel mode identification model without compromising
client privacy.

• System and Statistical Heterogeneity: Clients may collect
data by different devices (e.g., mobile phones, smart-
watches), use different systems (e.g., IOS, Android) as
well as collect local data in different environments [25],
[27], [28]. On the other hand, the local dataset of each
client may have different distribution and volume for each
category. For example, some users may often walk, and
others would prefer to drive, which violates the assump-
tion of independent and identical distributed (i.i.d.) that is

commonly used in machine learning. Furthermore, there
is no guarantee that all clients keep connected with the
server during model training. In summary, these systems
and statistical heterogeneity bring challenges to modeling
and optimization.

To address these challenges, we design a new deep neural
network architecture and propose a novel clustering aggre-
gation algorithm in our semi-supervised federated learning
system for travel mode identification. In particular, the main
contributions of this paper are summarized as follows:
• A decentralized semi-supervised machine learning sys-

tem for privacy-preserving travel mode identification:
We consider a more realistic assumption that the client
data is unlabeled and we propose a novel semi-supervised
federated learning system to accurately infer the travel
mode without compromising privacy. Specifically, we use
pseudo-labeling methods to label the client’s data and
combine federated learning (FL) to perform local model
training, which allows users to share models instead of
raw data to respect the privacy [23], [29].

• A new deep neural network (DNN) architecture for
travel mode identification: We propose a novel convolu-
tional neural network (CNN)-gated recurrent unit (GRU)
model, which uses CNN to extract the trajectory changes
and fine-grained features of GPS trajectories and use
GRU to capture the time-correlation of GPS data. In this
way, we can further capture the temporal and spa-
tial correlation of GPS trajectories, thereby achieving
fine-grained correlation modeling and accurate travel
mode identification.

• A novel group clustering aggregation algorithm
and data augmentation methods: We propose a
group-clustering (GCL) algorithm to group client and
aggregate local model parameters according to the dis-
tribution of the client dataset. The experimental results
show that the GCL algorithm can boost the convergence
speed of the model in a non-independent and identically
distributed (non-i.i.d.) data distribution. Besides, The data
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augmentation method we proposed can also be effective
in improving the performance of the model.

• Extensive experimentation and model validation: We
conducted a comprehensive set of experiments, showing
that our system achieves over 90% accuracy with only
50% of labeled data, regardless of the data distribution.
This indicates that our system does not only achieve accu-
rate travel model identification on a real-world dataset but
also efficient on non-i.i.d. data distribution.

To the rest of this paper is organized as follows. We first
review the background of travel mode identification in Sec. II.
Then, we present the problem definitions and challenges in
Sec. III. Sec. IV elaborates on the proposed system. We con-
duct a series of experimental and analyses in Sec. V. Finally,
we conclude this paper in Sec. VI.

II. RELATED WORK

A. Travel Mode Identification Approaches

For the research on GPS data-driven travel mode identifica-
tion, previous work has focused on developing methods that
follow the aforementioned two-step identification paradigm
proposed by Zheng et al. [13], [14]. In their pioneering
study, the long trajectories are divided into multiple trip
segments by using domain-specific commonsense information.
Then hand-craft features (i.e., variance and mean of speed)
of each segment are computed and used as inputs to the
classification task to infer travel modes. These works provide a
fundamental scheme for travel mode identification [15], [16],
[30], [31], but there is still a need to perform high-dimensional
feature extraction and follow this general approach to achieve
fine-grained travel mode identification.

Therefore, some researchers have begun to use neural net-
works for travel mode identification. For example, Endo et al.
designed a image and location retention information-based
methods to map GPS trajectories into images and automat-
ically extract features by DNN. Wang et al. adopted sparse
autoencoder-based methods to capture features and perform
travel mode identification. However, despite the use of DNN
for feature extraction, their solution did not achieve good
results, and the accuracy was even lower than that of handcraft
feature extraction. Owing to the successful application of deep
neural networks in research areas such as computer vision and
natural language processing, many researchers begun to apply
CNN [15], [31] and recurrent neural networks (RNN) [32]
or their variants (e.g., long short-term memory (LSTM)
[33], [34], convolutional bi-LSTM [34]) to capture the time
dependence of GPS trajectories to obtain better classification
results.

While these methods have led to long-lasting progress in
travel mode identification, they still face two serious chal-
lenges when accessing GPS data: data privacy issues and data
availability issues.

B. Privacy-Preserving Techniques for
Travel Mode Identification

To response the first challenge, researchers have pro-
posed many privacy-preserving techniques for travel mode

identification. These techniques are mainly divided into two
categories: encryption-based methods and privacy-preserving
machine learning based methods.

1) Encryption-Based Methods: Such techniques generally
use encryption algorithms (e.g., homomorphic encryption) [35]
to encrypt data or use secure computing methods (e.g., secure
multi-party computing) [36] to ensure the security of the
computing results, thereby preventing malicious tampering and
malicious attacks by attackers. However, these methods are
not compatible with complex machine learning models due to
the requirements of encryption algorithms, which hinders their
own development.

2) Privacy-Preserving Machine Learning Based Methods:
To be compatible with complex machine learning models,
privacy-preserving machine learning technologies came into
being. For example, Zhu et al. [37] utilize this technique to
propose a privacy-preserving travel mode identification appli-
cation. Despite the efforts on privacy preservation, the results
cannot achieve a satisfactory trade-off between identification
performance and privacy protection. To address this problem,
Liu et al. [38] introduced federated learning to ITS, enabling
them to conduct ITS research without compromising privacy
or violating regulatory regulations.

Although the above methods have achieved great success in
the field of privacy-protected traffic mode identification, they
are still troubled by the availability of data.

C. Semi-Supervised Learning for Travel Mode Identification

To response the second challenge, researchers have made
many efforts in the field of semi-supervised learning. Recall
that, massive labeled data can provide great support in research
on intelligent transportation systems, especially in travel
mode identification. However, acquiring the manual labels
has shown to be highly difficult in practice [30], [31], [39].
Therefore, researchers proposed some novel semi-supervised
machine learning models, e.g., Autoencoder [31] and ensemble
LSTM [30] to solve the problem of the limited amount
of data. However, none of these researches considered both
privacy-preserving and insufficient data issues.

Inspired by the previous work, this paper considers the
problem of semi-supervised learning and privacy protection
in travel mode identification. We propose a semi-supervised
federated learning model to accomplish the task and address
the aforementioned challenges, which can achieve high iden-
tification accuracy while protecting privacy.

III. PRELIMINARIES

In this section, we give a brief introduction to the federated
learning system and some related definitions in this work.

A. Federated Learning and Federated Averaging Algorithm

Federated learning system was proposed by
McMahan et al. [29], whose idea of is to allow user
build machine learning models while keeping user’s
data locally. Typically, FL systems employ the federated
averaging (FedAvg) algorithm to train a shared global model
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Algorithm 1 Federated Averaging (FedAvg) Algorithm
Server:
1: Initialize global model parameters ω0

2: for each round t = 1, 2, . . . do
3: Kt ← (Sample a subset client from K)
4: for each client k ∈ Kt in parallel do
5: ωt+1

k ← ClientModelUpdate(k, ωt )
6: end for
7: ωt+1← 1

|Kt |
�

k∈Kt

ωt+1
k

8: end for
ClientModelUpdate (k,ω):

9: η is the learning rate,
10: for each epoch e = 1, . . . , E do
11: ω← ω − η∇�(ω)
12: end for
13: return ω to server

collaboratively through multiple decentralized users without
sharing the raw data [29]. Let K represent the set of clients,
and D = {D1, D2, · · · , Dk} denote the dataset owned by each
client. The training steps of FedAvg are outlined as follows:
• Initialization: First, at each round of training t , the server

randomly selects a subset of clients, i.e., Kt ⊆ K, from
all participating clients to participate in the FL task (e.g.,
prediction tasks or classification tasks). Second, the server
broadcasts the initialized global model parameters ωt to
each selected client k, k ∈ Kt .

• Local Training: Each client trains the received global
model by E epochs on its local dataset Dk . The goal of
the client is to minimize the following objective function:

arg min
ωk∈R

Lk(ωk) = 1

|Dk |
�

(xi ,yi )∈Dk

�i (yi , fk(xi ;ωk)),

(1)

where Dk denotes the local dataset that contains
input-output vector pairs (xi , yi ), xi , yi ∈ R, ωk is the
parameter of local model fk , and �i (·, ·) is a local loss
function (i.e., �i (yi , fk(xi ;ωk)) = 1

2 (xi
Tω − yi )). Then

each client uploads its own model updates to the server.
• Aggregation: The server uses FedAvg [29] (as shown

in Algorithm 1) algorithm to aggregate these model
updates and obtains a new global model ωt+1 for the
next iteration, i.e.,

ωt+1 = 1

|Kt |
�
k∈Kt

ωt
k , (2)

Note that the system repeats these training steps until the
global model achieves convergence.

The goal of FedAvg is to perform multiple gradient descent
optimizations on the client and reduce the communication
overhead with the server.

B. Related Definitions

In this section, we introduce the definition and terminologies
that are employed throughout this paper:

Definition 1 (GPS Raw Record): In this paper, the pro-
posed method is applied to raw GPS data comprised of GPS
records, which can be formally represented as follows:

G PSraw = {(latitude, longitude, timestamp,mode)} (3)

Considering that raw GPS record cannot guarantee a con-
sistent sampling rate and the accuracy of each location record,
it cannot be directly applied to our proposed system. Hence,
we follow the data segmentation method [13] and the feature
extraction method [15] to process the unlabeled raw GPS
record into a data structure that can better represent the data
characteristics (refer to Sec. IV-A). Furthermore, since each
client may collect GPS records with different travel modes
(e.g., walk, bus, etc.), this may cause the data distribution
between clients is non-i.i.d. Here, we need to define the degree
of non-i.i.d. as follows:

Definition 2 (Metric R for non-i.i.d. Degree): We define
the class distribution of the data Dk at the k-th client as
Pk = [l1, l2, . . . , ld ], where li denotes the proportion of the
i -th category in Dk, d is the total number of categories of
travel modes. For all 1 ≤ k ≤ K ,

�c
i=1 Pk[i ] = 1. Therefore,

the non-i.i.d. degree Rk to measure the class distribution
skewness of the data Dk is defined by

Rk = max (Pk)−min (Pk)�
(Pk)

. (4)

For example, Rk = 0 when Dk has a uniform class distribution
Pk = [1/d, . . . , 1/d]. When Dk only has one class, Rk = 1.

Combining the above definitions, the problems targeted in
this paper can be formalized as follows:

Definition 3 (Semi-Supervised Federated Learning-Based
Travel Mode Prediction Problem): In our SSFL system, we use
F(ω) to denote a global travel mode predictor that can infer
the travel mode ŷ on the local unlabeled GPS dataset Dk at
the client. The formal definition of the problem studied in this
paper is as follows:

min
ω∈R

k�
i=1

fk(ω)
Dk→

aggregated
F(ω)

Ds→
predict

ŷ, (5)

where Ds is the privacy-permitted labeled dataset at the server,
and fk(ω) is the local identification model at the client, and
Dk is the unlabeled dataset at the client. The training objective
of this problem is to find an optimal F∗(ω) to predict the
travel mode, which is aggregated by the client’s local predictor
through an aggregation algorithm.

IV. METHODOLOGY

In this section, we present our solutions to address the
challenges that mentioned in Sec. I. We first demonstrate the
data pre-processing, data augmentation, and feature extraction
methods. Second, we elaborate on the architecture of our
proposed travel mode identification model. Third, we give
the design of the semi-supervised federated learning system.
Finally, to deal with the non-i.i.d. data issue, we propose a
group clustering-based aggregation algorithm to achieve robust
learning.
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Fig. 2. The four channel structure of a GPS segment.

A. GPS Record Processing

The GPS record processing steps comprise data motion fea-
ture calculation, data augmentation, and time-domain feature
extraction.

1) Capturing Motion Feature: A user’s GPS trajectories
with length n can be represented as a sequence of raw GPS
record g ∈ G, and G = {g1, g2, . . . , gn}. Each record g =
[lat, lng, t] is a triple of longitude, latitude, and timestamp,
which indicates the private location information of device at
time t . We can capture several motion features for every GPS
point based on the geographic coordinates and timestamps.
The relative distance (RD) between two consecutive GPS
record can be computed by Vincenty Formula [40]:

RDi = Vincenty
�
lati , lngi ; lati+1, lngi+1

�
, (6)

The time interval between two successive records can also
be computed by timestamp:

�ti = ti+1 − ti . (7)

Based on the RDi and time interval (�ti ), we can calculate
the speed Si , acceleration Ai , and jerk Ji of the Ri location.
These motion features can be calculated by using the following
equations:

Si = RDi

�ti
, 1 ≤ i ≤ n, Sn = Sn−1, (8)

Ai = Si+1 − Si

�ti
, 1 ≤ i ≤ n, An = 0, (9)

Ji = Ai+1 − Ai

�ti
, 1 ≤ i ≤ n, Jn = 0. (10)

2) Training Data Setup and Augmentation: After capturing
the motion features of each GPS trajectories, we can get four
motion feature vectors (RD, S, A, J ) with fixed length n and
we combine these vectors to form a tensor with 4 channels
X = {x1, x2, . . . , xn} (xi = [RDi , Si , Ai , Ji ], i represents the
i -th time step). As shown in Fig. 2, each channel represents
the relative distance, speed, acceleration, and jerk, respectively.
So far, we have obtained the training data X that can be
used for travel mode inference through processing the raw
GPS record. Considering that the amount of data X with
complete annotations is too small, we define an augmentation
function AU G(·), which flips X according to the time step
arrangements of X . The implementation of this augmentation
function is given by X 	 = AU G(X) = {xn, xn−1, . . . , x1}.

3) Capturing Time-Domain Feature: In addition to follow-
ing previous literature on travel mode identification to design
GPS data preprocessing algorithm [13], [15], [31], we believe
that providing more feature information for trajectory data is
beneficial for model classification. As described in Sec. II,
there are many methods to further provide auxiliary features to
the classification model (e.g., [19], [30], [41]), but we consider
that the motion changes are discriminative with respect to
various travel modes in the frequency domain.

While there are other methods for frequency-domain feature
extraction, such as the discrete Fourier transform (DFT). Both
DWT and DFT are widely recognized in time-series and
signal processing tasks, especially for signal compression and
frequency domain feature extraction. However, DWT achieves
the same quality of trajectory reconstruction with slightly
better performance than DFT. Furthermore, DWT provides
higher spatial resolution and lower frequency resolution, which
can capture the motion trends with a small number of coeffi-
cients [42]. Therefore, we deploy DWT to extract frequency
domain features. Given a time sequence signal x(t), DWT
adopts discrete wavelets ψa,b(t) to transform the input signals
into the following signal:

da,b =
� +∞
−∞

x(t)ψ∗a,b(t)dt = �
x(t), ψa,b(t)

�
, (11)

where

ψa,b(t) = 1√
2a
ψ

	
t

2a
− b



, a, b ∈ Z. (12)

Here, ψ∗a,b(t) is the complex conjugate of ψa,b(t), a and b are
oscillatory frequency and the shifted position of the discrete
wavelet respectively.

From another perspective, DWT can also be considered as
a multi-resolution decomposition of the input signal [43]:

s(t) =
�

b

AM,b2−M/2ϕ

	
t

2M
− b




+
M�
a

�
b

da,b(x(t), ψ(t))2−a/2ψ

	
t

2a
− b




� AM (t)+
M�
a

Da(t), (13)

where AM,b =
�
x(t), ϕM,b(t)

�
is the approximation coefficient

at the decomposition M , ϕ(t) is a companion scaling function.
Using the Eq. (13), the signal x(t) is decomposed into an
approximation signal AM (t) and detail signal Da(t).

Since we need to pay more attention to the attribute
trends of GPS trajectories than details when identifying travel
modes. We only utilize the approximation signal AM (t) of
the pre-processed attributes (RD,S,A,J ) and db (daubechies)
is adopted as mother wavelets to perform the decomposition.
After the discrete wavelet transform, we can get 4 features
with length 1/n. This feature can be combined into a vector
W with length n, which can then be used as the input of the
identification model.
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B. Travel Mode Identification Model

In this work, we design a novel DNN for travel mode iden-
tification. As shown in Fig. 3, this network is constructed by
three main components, i.e., CNN, GRU, and fully connected
layer (FCL).

1) Convolutional Layer: CNN is an outstanding DNN struc-
ture for feature extraction, which can also be used to acquire
local data trends. Furthermore, the local connectivity in CNN
can reduce the number of weights, speed up the training
process, and mitigate the curse of dimensionality problem [44].
Therefore, we apply CNN to extract the motion change and
high-level spatial features of GPS trajectories. In this archi-
tecture, we use three convolutional layers to extract features
from the input data, and a pooling layer following each
convolutional layer. Specifically, we set each convolutional
layer’s kernel size to (1× 3) and let their strides equal to 1,
then we employ a max-pooling layer with kernel size is (1×2).
Finally, we use batch-normalization to normalized the model
parameters.

The proposed model can obtain high-level spatial features
about the changing trend of GPS trajectories after performing
a series of convolution operations on the input data. However,
we cannot achieve good results if we directly use these features
for identification. Thanks to GRU’s design based on time state
propagation [45], [46], we can use GRU to learn potential
time-correlations from the information extracted by CNN.

2) GRU Layer: GRU is an effective variant of the LSTM
network, which has a more straightforward structure than
LSTM and can also address the long dependency problem
in conventional RNN models [46]. Typically, the GRU cell
structure has two gates, i.e., reset gate r and update gate z.
Intuitively, the reset gate determines how to combine the new
input information with the previous memory. The update gate
defines the amount of memory saved to the current time step.

Let xt and ht denote the input time series and intermediate
states, h̃t denoted the candidate state respectively. At time t ,
the reset gate rt and update gate zt can be expressed as:

rt = σ
�
Wz ·

�
ht−1, xt

��
, (14)

zt = σ
�
Wz ·

�
ht−1, xt

��
, (15)

where Wz is the network weights, σ represents the sigmoid
activation function, and ht−1 is the previous state at time step
t−1. The reset gate can determine how much information from
the previous state is passed to the current candidate state h̃t :

h̃t = tanh
�
W · �rt � ht−1xt

��
, (16)

where � represents the Hadamard product. And it use tanh as
an activation function can reduce the number of calculations
and prevent gradient explosions. Finally, the current memory
at the current time step as follows:

ht = (1− zt )� ht−1 + zt � h̃t . (17)

3) FCL Layer: As shown in Fig. 3, we use a GRU layer with
16 hidden states to extract time-correction in this model. Then,
we connect the extracted high-dimensional feature attributes
with the time-frequency domain features previously obtained
by DWT. This combined vector is used as the input of the

Fig. 3. The architecture of the proposed network.

two consecutive FCL. Specifically, we employ Rectified Linear
Units (ReLU) as the first layers due to its efficient gradient
descent and backpropagation performance. Since we need to
infer the travel mode through GPS trajectories, we use the
softmax function as the activation function of the last layer,
which can be mathematically expressed as follows:

Softmax(zi ) = ezi�d
l=1 ezl

, (18)

where d represents the total modes, and Softmax(zi ) can be
used to calculate the probability that z belongs to a certain
modes.

C. Semi-Supervised Federated Learning

1) Pseudo-Labeling Training Method: As demonstrated
in Fig. 1, the server holds a labeled dataset, and the clients
have an unlabeled dataset in SSFL. In this context, we adopt
a pseudo-labeling-based training method to achieve model
training on the unlabeled dataset at the client. Since the
identification model applied the softmax function on the last
FCL layer, the model eventually predicts the probability that
the GPS trajectories belong to a specific travel mode. Based
on these characteristics, we set a threshold of τ to give a
pseudo label to a training sample in the local unlabeled dataset.
When the model’s predicted probability of an input belonging
to a specific travel mode is greater than τ , we consider this
expected model has high confidence and set it as a pseudo
label for the input data.

2) Training Objective and Model Averaging: Based on
the pseudo-labeling training method, in SSFL, the objective
function Eq. (1) mentioned in Sec. III-A can be rewritten as
follows:

Lk = 1

|Dk |
�

xi∈Dk

sgn
�
max

�
p(ŷi )

� ≥ τ �

× � �
arg max

�
ŷi

�
, fk (xi ;ωk)

�
, (19)
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where sgn(·) is the indicator function, p(ŷi) is the prediction
of the model fk on the sample data xi , and wk are the weights
of k-th client model fk . Similarly, we can define the loss
function on the server as follows:

Ls = 1

|Ds |
�

(xi ,yi )∈Ds

� (yi , fs (xi ;ωs)), (20)

where yi is the true label of xi . The weight parameters in
server model fs and client model fk are aggregated by global
model averaging.

Typically, FedAvg [29] can be used in the SSFL system to
aggregate model updates:

ωglob = 1

|K| + 1
(ωs +

�
k∈K

ωk). (21)

However, if we direct use the vanilla FedAvg given
in the Algorithm 1, the model diversity between differ-
ent clients brings great challenges to training and aggrega-
tion [47]. To address this issue, we propose a client group
clustering-based model to update the aggregation algorithm,
which divides client K into c groups and then performs the
model averaging. In particular, after completing the SSFL
training of all clients’ models, the server divides them into
c groups Ci

c
i=1 and updates wglob according to the following

formula:⎧⎪⎨
⎪⎩
ω{glob,i} = 1

|Ci | + 1
(ωs +

�
k∈Ci

ωk), i ∈ {1, 2, . . . , e}
ωglob = 1

c

�c

i=1
ω{glob,i}

(22)

The above model averaging algorithm’s principle is to
reduce diversity among the aggregating models, thereby speed-
ing up the training process. The details of this algorithm will
be introduced in Sec. IV-D.

While there are many methods for parameter aggregation
and optimization in the Federated Learning [48]–[51], these
methods have been proposed mainly to solve specific prob-
lems (e.g., resource allocation, model optimization). From
a practical perspective, FedAvg is still the most dominant
and efficient method [23], [25]. Therefore, we adopt the
FedAvg-based grouping clustering algorithm as the main
aggregation approach in this paper.

D. Group-Clustering Aggregation Algorithm

In practice, each client’s data may not satisfy the assumption
of i.i.d. data distribution, which leads to difficulties in the opti-
mization and convergence of the model. To address this issue,
we propose a group-clustering (GCL) aggregation algorithm to
robustly aggregate the clients’ updates. Specifically, we use the
class distribution Pk as a measure of clustering to divide client
updates into c groups. The main steps of the GCL algorithm
are as follows:
• Step 1: At each round of training t , the client receives

the global model from the server. Then each client k uses
the global model to make a travel mode prediction (i.e.,
pseudo label) on its own local unlabeled dataset Dk and
calculate the class distribution Pk .

Algorithm 2 Group-Clustering (GCL) Aggregation
Algorithm for non-i.i.d. Data

Input:
Client set K = {k1, k2, . . . km},
the number of groups c, m > c

Output:
Clustering result C = {C1,C2, . . .Cc}.

1: for each client k ∈ K do
2: Calculate the class distribution Pk

3: end for
4: Random select c clients as the initial cluster centroids.
5: repeat
6: for each client k ∈ K do
7: Select the cluster Cc has the smallest distance to

the client, and assign k to the Cc

8: end for
9: for each cluster Ci ∈ C do

10: Update the cluster centroids and make the centroids
has the smallest distance to each client in the
cluster.

11: end for
12: until convergence
13: return C to server.

• Step 2: The server uses the GCL algorithm to calculate
the similarity of the class distribution Pk . Specifically,
the server divides the client into c groups according to the
Euclidean distance of the class distribution Pk and uses
the K-means clustering algorithm. Next, the Euclidean
distance of different Pk is defined as follows:

dist (Pi , Pj ) =
���� d�

l=1

(Pl
i − Pl

j )
2 (23)

• Step 3: We consider K as the client set. After multiple
iterations of clustering, we finally divide the client set
into c groups. The Pk distance in the same group is the
smallest, which means that the clients in each group have
similar class distributions.

The detailed steps of the GCL algorithm are shown in the
Algorithm 2.

Remark: When the client data distribution is i.i.d., the cat-
egories distribution is essentially the same between different
clients. It causes the GCL algorithm to tend to randomly select
clients for grouping. Therefore, our algorithm can be mainly
applied to non-i.i.d. data distribution.

V. EXPERIMENTAL EVALUATION

In this section, we comprehensively evaluate our proposed
system’s performance in identifying travel mode using a
real-world dataset. We first investigate the performance of
our proposed system and compare it with other approaches.
Second, its performance under a non-i.i.d. data distribution
and evaluate the effectiveness of the proposed GCL algorithm
and data augmentation method. Third, we analyze the impact
of other parameters, which will be introduced in Sec. V-A.
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TABLE I

COMPARISON OF TRAVEL MODE IDENTIFICATION APPROACHES

Finally, we will analyze the running efficiency and communi-
cation cost of the proposed system.

A. Dataset and Evaluation Setup

In the subsequent case studies, we adopt raw GPS data
from the GeoLife project [14] for investigation, including
the travel trajectories of 182 users over 5 years. 69 users
recorded their travel modes in this dataset. We use their labeled
information as ground-truth facts and to regulate them by
the methods mentioned in Sec. IV-A. Following the dataset
authors’ recommendation, we select 5 main transportation
modes for identification, i.e., walk, bus, bike, drive, and
train. After preprocessing all the GPS trajectories, we get a
total of 24, 743 samples. For the convenience of partitioning,
we use 2743 samples from the total samples as the test set
Dt , and the remaining samples are split into server dataset
Ds and client dataset DK according to the proportion of
labeled samples. This data partitioning method is widely used
in semi-supervised learning [30], [31], which enables better
evaluation of the model with various proportions of labeled
data.

We set the default settings for some common parameters
before starting the simulation experiments as follows:
• Client number K : We set K = 20 by default, which

means our unlabeled data are distributed equally to
20 clients.

• Percentage of labeled data α: α indicates the proportion
of the labeled data in the server. The default alpha setting
is 50%.

• Communication Round T : T denotes the number of
training steps of the local model during two consecutive
communications. The default setting of T is 5.

• Non-i.i.d. level R: We assume that each client contains at
most two travel modes to simulate the distribution of non-
i.i.d. data in the real world as much as possible, which
means R = 0.5.

• The number of groups c: In each communication round,
we use the GCL algorithm to divide the clients who par-
ticipate in the communication into c groups. Considering
that a large c renders increasing communication load,
in our experiments, we set c = 3.

In each training round, we randomly select 50% of all clients
to participate in the communication, and each client model
adopts the Adam [52] optimizer on its dataset with local batch

Fig. 4. The system convergence behaviors under different amounts of labeled
data.

sizes B = 30, which performs a parameter aggregation with
the server after 5 rounds of local training. All case studies
are developed by Python and Pytorch [53], and all simulation
experiments were performed on a computing server with an
Nvidia GeForce RTX2080 Ti GPU and Intel(R) Xeon(R)
Silver CPU.

B. System Performance

In this section, we first evaluate the proposed system’s effec-
tiveness by comparing it with different percentages of labeled
data (i.e., α = 5%, 20%, , 50%, 100%). As shown in Table I,
the proposed semi-supervised learning system only requires
5% labeled data for training can achieve 84.3% identification
accuracy. When using 50% of all labeled data, the accuracy
exceeded 91%, which is only 1% less than when training with
all labeled data. Besides, as we can see from Fig. 4, there is
a slight decrease in performance when using fewer labeled
samples in training, but our model still converges quickly.
Such results show that our scheme can converge and achieve
better accuracy with a few labeled data. Furthermore, there
is a trade-off between the privacy protection of our system
and the local computational overhead. Using less labeled data
(small α) means that our system discloses fewer data and
can better protect user privacy, but correspondingly leads to
more local computations and accuracy loss. For example, less
labeled data may cause the client to increase the time for
semi-supervised computing operations during local training.
Notably, the privacy preservation for the system does not affect
the communication overhead since only model parameters are
passed between clients and the server.
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Fig. 5. System performance between i.i.d. and non-i.i.d. distribution.

As one may concern that our model does not apply in
the scenarios of non-i.i.d. data distributions, we consider the
performance of the model under the distribution of non-i.i.d.
data. The simulation results are shown in Fig. 5. We can find
that although the performance of our model is degraded under
the non-i.i.d. data distribution, it can still achieve a satisfactory
identification accuracy.

Moreover, with data non-i.i.d. distributed and only 5% of
all data labeled, our model still achieves over 82% accuracy.
And the maximum difference in the accuracy of our model in
different data distribution is not more than 2%, which fully
demonstrates that the proposed system is also robust to the
non-i.i.d. data distribution.

C. Model Performance Comparison

In this section, we investigate the performance of our
proposed system with other approaches presented in the lit-
erature. To be specific, we conduct a series of experiments
and compare their identification accuracy at various labeling
rates, including semi-two-steps [31], semi-pseudo-label [31],
semi-supervised convolutional autoencoder (SECA) [31], con-
volution neural network (CNN) [15], and semi-ensemble meth-
ods (Ensemble-LSTM) [30]. All these methods are applied to
GeoLife dataset. It is worth noting that the proposed system
achieves satisfactory accuracy with full privacy protection,
while the rest do not have this property.

The results of the comparison are shown in Table I. The best
performance is displayed in bold. We can find that our model
outperforms all other methods being compared when using
50% of the total amount of labeled data from the experimental
results. However, when the amount of label data used is too
small, our model slightly underperforms the Ensemble-LSTM
method. The reason is that the pseudo-labeling of the data
causes some accumulation error, which affects the perfor-
mance of the model. In addition, the model also has some
drawbacks that make it not suitable for resource-constrained
mobile scenes and FL systems: The first is Ensemble-LSTM
uses a scheme that simultaneously trains multiple DNN models
with stack LSTM layers [30], considering the client does not
have the same computing power as a server, which is not
applicable in an FL environment. Second, Ensemble-LSTM
uses multiple DNN models, the smallest of which is approxi-
mately 8.8Mb, while the model we proposed is only 4.9Mb,
which greatly increases the communication cost if we use
Ensemble-LSTM. Most importantly, Ensemble-LSTM needs

Fig. 6. Accuracy comparison with or without using data augmentation
methods.

to collect users’ data in a centralized server, leading to user
privacy leakage. Therefore, our approach is effective and feasi-
ble both in terms of privacy protection and training efficiency
of the model.

D. Performance of the Data Augmentation
and Group Aggregation Operation

In this section, we evaluate the impact of the data augmen-
tation methods and group aggregation algorithms (GCL) on
system performance.

1) Data Augmentation Performance: Because the quantity
of labeled data is too limited in semi-supervised learning,
we use the data augmentation method proposed in Sec. IV-A.2
to increase the amount of labeled data. It should be noted
that our augmentation method only applies to the labeled data
(i.e., server data). From the simulation result presented
in Fig. 6, it is quite clear that the method is effective in
improving the accuracy of them. The reason is that our data
augmentation method flips data through time series to max-
imize the simulation of real-world motion characteristics of
different modes. These augmented data show the same motion
characteristics (minimum and maximum values of speed) as
the original data, albeit with different temporal dynamics. And
the extra data can also be beneficial for model training.

2) Grouping Mechanism Performance: To verify the pro-
posed GCL algorithm’s effectiveness, we conduct a series
of experiments with different amounts of labeled data. This
simulation only considers the case of non-i.i.d. data dis-
tribution since the GCL algorithm degenerates into a ran-
dom grouping algorithm under i.i.d. data distribution. We set
α = 0.05/0.2/1, R = 0.5,C = 3, respectively in non-i.i.d.
data distribution, and all other parameters set to default. The
performance are shown in Fig. 7. It can be seen that using
the GCL algorithm can improve the convergence speed of
the model. This is explained by the fact that we employed
a group-clustering aggregation method based on data distrib-
utions, which is able to capture the main gradient features in
different data distributions, thus minimizing the influence of
the non-i.i.d. distribution on the global model.

E. Parameter Sensitivity Test

Lastly, we perform a parameter sensitivity test to evaluate
the impact of parameter selection in SSFL. We first assess the
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Fig. 7. Accuracy comparison with or without GCL algorithm.

Fig. 8. Accuracy comparison under different environments.

impact of different numbers of users on system performance.
We set K = 10, 20, 100, 500, and α = 0.2/0.5 for simulation
(Since the total amount of our data is too limited to distribute
to 500 clients for deep learning modeling, we replicate the data
by a multiple of 5 and then allocate it to 500 clients). As shown
in Fig. 8(a), we can see that our system still works well for
a large number of clients, but the increase in the number of
users has a negative impact on the performance of the model.
The reason is that the increase in the number of clients also
increases the variability between models and makes model
aggregation difficult. Furthermore, The grouping-based model
averaging methods can address the problem of server-client
communication in the FL framework since it is not guaranteed
that every client participating in FL always has a network
connection to the server.

Subsequently, we conduct research on different non-i.i.d.
levels. We set K = 20,C = 3, α = 0.2/0.5, and R =
0/0.25/0.5/1, respectively, and all other parameters set to
default. When R = 0(R = 1), the clients have a uniform
class distribution (single class data). The simulation results
are presented in Fig. 8(b). We can discover that no significant
degradation is observed in the model performance as non-
i.i.d. level increases, which can be attributed to the extraction
capability of our model for high-dimensional data features
and the adaptability of the proposed GCL algorithm. And the
experimental result also indicate the robustness of our system
to the distribution of non-i.i.d. data.

Finally, we consider the fact that the communication win-
dow between client and server may vary in different cases.
Therefore, we also evaluate the performance of the system

under different communication window length. As can be
seen in Fig. 8(c), an increase in T implies a decrease in the
communication frequency, which leads to worse performance
of the model. This is because communicating with the server
for a long period can lead to the local model’s overfitting issue.
Therefore, maintaining a continuous communication period is
essential for model performance.

F. Discussion

Due to computational resource constraints, we do not have
enough resources to simulate distributed training, so we use
a single-core CPU to perform serial training on a server with
an Intel(R) Xeon(R) Silver 4210 CPU and an Nvidia 2080Ti
GPU. By default, there are 20 clients in total, and 10 clients
are selected for training in each round. The total time to
complete 100 training rounds is about 3060 seconds (ignoring
the parameter communicate time). It means that each round in
the simulation takes about 30.6 (3060/100 = 30.6) seconds,
and each client takes about 3 (3060/100/10 = 3.06) seconds
for training a round. In other words, the training time for
100 rounds is about 5 minutes (306 seconds) for each client.
Although the users’ device may not have such computing
power as the server and considering the communication time
between the server and the client, we can still optimistically
estimate that the whole experiment can be completed within
a few hours. In most cases, the FL training is conducted
when the device is unused (e.g., at night after the user
has slept). The whole process does not interfere with users’
daily routine and is highly feasible in real-life situations.
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In addition, we also examine the testing time of the system.
For all 2743 trajectories, our system can infer all travel modes
within 0.2 seconds. Although the simulation test time may
slightly differ from the real environment considering different
devices, such efficient inference capability fully illustrates the
feasibility of our system in practical applications.

VI. CONCLUSION

This paper proposes a semi-supervised federated learn-
ing (SSFL) empowered travel mode identification system that
can use a small privacy-permitted labeled data on the server
to accurately infer travel modes without compromising user
privacy. In the proposed system, we design a novel DNN archi-
tecture that integrates CNN and GRU’s superior performance
to capture the spatio-temporal high-dimensional features of
GPS trajectories data in a fine-grained manner. To enhance this
identification model’s performance, we introduce a data aug-
mentation method that uses the method of flipping time-series
data to increase the amount of label data held by the servers.
In particular, we set a threshold to determine the pseudo-
labels’ confidence and feed these pseudo-label data to the
proposed system. For the problem of non-i.i.d. distribution
of data collected in travel mode identification applications,
we propose a group-clustering aggregation algorithm to the
group and aggregate the heterogeneous data according to the
client class distribution, thereby achieving robust aggregation
to non-i.i.d. data.

To evaluate the performance of our proposed system,
we conduct extensive experiments on the Geolife dataset.
We first evaluate the performance of our system under dif-
ferent volumes of available information. Compared to existing
methods, our system can be trained with 50% of the labeled
data to achieve 91.3% identification accuracy while protecting
privacy, which is impossible with all other methods. Subse-
quently, we evaluate our system’s performance in different
environments and parameter settings to demonstrate that it is
also effective in different scenarios (i.e., massive clients, non-
i.i.d. distribution, and long communication period). We con-
sider that this work provides a promising way to use small
amounts of data for travel mode identification without infring-
ing on user privacy.
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