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Abstract. High-quality traffic data is crucial for intelligent transporta-
tion system and its data-driven applications. However, data missing is
common in collecting real-world traffic datasets due to various factors.
Thus, imputing missing values by extracting traffic characteristics be-
comes an essential task. By using conventional convolutional neural net-
work layers or focusing on standalone road sections, existing imputation
methods cannot model the non-Euclidean spatial correlations of complex
traffic networks. To address this challenge, we propose a graph attention
convolutional network (GACN), a novel model for traffic data imputa-
tion. Specifically, the model follows an encoder-decoder structure and
incorporates graph attention mechanism to learn spatial correlation of
the traffic data collected by adjacent sensors on traffic graph. Tempo-
ral convolutional layers are stacked to extract relations in time-series
after graph attention layers. Through comprehensive case studies on the
dataset from the Caltrans performance measurement system (PeMS), we
demonstrate that the proposed GACN consistently outperforms other
baselines and has steady performance in extreme missing rate scenarios.
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1 Introduction

In recent years, many data-driven approaches have been proposed with the
development of intelligent transportation system (ITS), such as traffic speed
prediction, traffic signal control, and origin-destination prediction [22]. These
data-driven approaches heavily rely on high-quality spatial-temporal traffic data.
However, due to various natural and human factors, traffic data collected in prac-
tice are often incomplete or corrupted, e.g., about 10% traffic data is missing in
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Beijing. Some extreme missing scenarios are reported in Alberta, Canada [12].
The average missing rate of traffic data in 7 years was 50%, and the short-term
missing rate can reach up to 90%. It is reported that missing data is unfavorable
to data-driven models, such as traffic flow prediction [8]. Thus, imputing the
missing values by analyzing spatial-temporal traffic features is an urgent issue.

Traditional imputation methods are based on universal interpolation meth-
ods such as k-Nearest Neighbor (k-NN) and support vector regression [10]. These
methods are inefficient when there are massive missing points. Compared with
traditional methods, methods based on deep learning have improved estimation
accuracy by capturing temporal or spatial dependency. Denoising stacked au-
toencoder (DSAE) [5], which combines denoising and stacked autoencoders, is
a typical deep model applied to impute traffic data. Subsequent work improved
imputation accuracy by using DSAE as a generator and designing a discrimina-
tor [4]. However, these methods only focus on isolated road segments and show
their limitations in modeling spatial correlation. Further research reconstructed
traffic trajectories into a two-dimensional matrix and applied a convolutional
neural network (CNN) for encoding and decoding [1].

There is a research gap in the aforementioned imputation methods, espe-
cially when they are employed to impute the traffic data in a large region. With
a complex network topology, the real-world traffic data is with a non-Euclidean
structure. These traditional learning models (such as CNN, etc.) are efficient for
data with Euclidean structures, but they are relatively insufficient in modeling
non-Fuclidean spatial correlation. With a graph structure for relational reason-
ing, graph neural network (GNN) is a framework that can learn the correlation in
topological space [21]. In ITS, GNN and its variants have been applied to traffic
forecasting tasks. See [16] for an example. Utilizing graph convolutional lay-
ers in a GAN framework, graph convolutional generative autoencoder (GCGA)
achieved significant performance in real-time traffic seed estimation [19]. Guo et
al. proposed ASTGCN, which captured spatial-temporal correlations by atten-
tion mechanism and convolution module [6]. GNN has shown its advantages in
modeling topological relationships of the traffic network. However, to the best
of our knowledge, traffic data imputation method using GNN-based approaches
has not been assessed in the literature.

To bridge the research gap, we propose a novel imputation model, namely,
graph attention convolutional network (GACN). The primary efforts of this work
are summarized as follows.

1. We design a spatial-temporal block with a graph attention layer and a convo-
lutional layer. Compared with the previous work, the graph attention mech-
anism can better capture non-Euclidean spatial correlations in traffic net-
works. As far as we are concerned, this is the first time to apply graph
attention network (GAT) [13] in traffic data imputation.

2. We propose an end-to-end traffic data imputation model that follows the
encoder-decoder structure. Specifically, both the encoder and the decoder
consist of two spatial-temporal blocks for spatial-temporal modeling, which
are concatenated to obtain an embedding of the input.
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3. We conduct comprehensive case studies on real-world traffic datasets. In
addition, we investigate a wide missing rate range from 10% to 90% to eval-
uate all kinds of practical scenarios. The experimental results demonstrate
that the proposed model achieves accurate imputation and maintains steady
performance under extreme missing scenarios.

The remainder of this paper is structured as follows. Section 2 briefly reviews
the development of traffic data imputation methods and attention mechanism.
Section 3 presents the problem formulation and introduces the proposed impu-
tation method. Section 4 represents and analyzes experimental results. Finally,
the paper is concluded in Section 5.

2 Related Work

2.1 Traffic Data Imputation

Traditional Imputation Approaches In the early traffic data imputation
literature, traditional methods can be summarized into three groups, i.e., pre-
diction, interpolation, and statistical learning [10]. Autoregressive integrated
moving average (ARIMA) and its variants are typical prediction examples. One
distinct shortcoming of the prediction model is that it only uses the foregoing
temporal information of the missing points. Commonly used interpolation meth-
ods, e.g., k-NN interpolates missing points by averaging neighboring observed
points. However, these methods show their limits by mainly focusing on a sin-
gle traffic sensor or a road section. On the other hand, statistical learning is
another line of traffic data imputation research, such as Probabilistic principal
component analysis (PPCA) [9]. More advanced method utilized low-rank tensor
structures to represent the traffic data and recover missing points [3].

Deep Learning Based Approaches In the era of big data, many deep learn-
ing based approaches have been proposed for time-series data imputation, but
not necessarily traffic data imputation. Generative adversarial networks (GAN),
which learn the distribution of training samples, have been applied to create
data imputation models. Yoon et al. proposed generative adversarial imputation
nets (GAIN) [17]. In GAIN, the discriminator was fed with a hint vector which
provided auxiliary information about the missing position. Luo et al. proposed
an end-to-end GAN (E2GAN) framework for multivariate time-series imputation
[11]. These universal imputation models usually concentrate on temporal mod-
eling rather than the correlations between different time-series. There are also
methods that capture spatial correlations with CNN layers [1, 15]. For example,
Yang et al. designed a GAN model with CNN layers and bidirectional attention
[15]. However, these methods neglect the network topology, which is crucial to
spatial correlations modeling.

2.2 Graph Attention in ITS

The attention mechanism is first emerged as a method to improve recurrent
neural networks’ performance on sequence-to-sequence learning tasks. The idea
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of the attention mechanism is to select features that have a relatively larger
impact on the task. In real-world traffic networks, the graph is large-scale and
combined with noise. Extracting features from these graphs is difficult and may
lead to massive computational cost. A practical solution is to incorporate the
attention mechanism on graphs, namely graph attention networks (GAT) [13].
Graph attention mechanism allows a model to focus more on relevant parts of
the graph. In I'TS-related applications, especially traffic speed prediction, many
methods based on graph attention mechanism have been proposed [6,20]. In the
reported results, these methods outperform graph convolution networks (GCN)
in many scenarios.

Inspired by the above literature and making use of its outstanding capability
in modeling complex and dynamic traffic networks, we employ graph attention
mechanism in our model to learn the spatial correlations for traffic data impu-
tation.

3 Methodology

The proposed GACN estimates missing values by capturing spatial-temporal cor-
relations from the observations. In this section, we first introduce our data pre-
processing techniques, including traffic network representation and traffic data
imputation formulation. Then, we present the structure of the proposed GACN.
Finally, we give a detailed description of the spatial graph attention and tempo-
ral convolutional layers respectively.

3.1 Data Preprocessing

In this paper, we define a traffic network as an undirected graph G = (V, E, A),
where V is the set of vertexes, i.e., the set of sensors in a specific region |V| =
N. Edges e(v;,vj) € E represent the spatial correlations between sensors. The
adjacent matrix of graph G is represented by A € RV*¥ in which a;; = 1
indicates sensor ¢ and sensor j are adjacent and a;; = 0 otherwise. Similar to
[20], we generate the adjacent matrix by thresholded Gaussian kernel,

i s )2
0 — 1,exp(fdm(§7;’vﬂ)> >cori=j (1)
Y 0, otherwise ’

where 02 and ¢ are the thresholds that decide the sparsity of A. dist(v;,v;) is
the Euclidean distance between sensors ¢ and j, which can be derived from their
respective locations.

Suppose a sensor records T' observations in a day. We denote the ground truth
traffic speed in a day as § = {st} € RNV*T | where s! is the observation from
sensor ¢ at time ¢. Fig. 1 depicts a diagram of traffic data imputation problem.
We first randomly drop points on a complete observation S as input. A missing
mask M = {m!} € R¥*T that records the missing positions is defined as,

" { 1, if 2! is observed

m; = I
: 0, if x} is missing

(2)
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Fig. 1. Diagram of traffic data imputation problem.

Then the input X = {x!} € RV*T can be represented by,
X=SoM, (3)

where © is the element-wise multiplication. z! = 0 indicates a missing value and
z! = s! indicates an observation. Missing rate is defined as the ratio of missing
values to the observations. The output of the model is denoted as Y = {y!} €
RY x T. The imputation error E(S,Y’), which is calculated on missing points,

is defined as follows,

E(S,Y) =) milsi -yl (4)
i,t

Take Fig. 1 as an example. The model takes random missing points as input.
Then, the imputation error is only calculated on those blocks with diagonal
shadow (the missing points).

According to the previous studies, we investigate two traffic data missing
types in this study, i.e., random missing (RM) and block missing (BM) [8]. BM
is the same as not missing at random (NMR) in [8]. Fig. 1 gives an illustration
of two missing types, where the blank blocks are the missing points, and the
blocks with dark shadows are observations. In RM, which is typically caused by
transmission failure, all the missing points are randomly scattered. BM is more
commonly caused by data center errors or power failure. The BM missing points
are gregarious in the spatial and temporal dimensions.

3.2 Graph Attention Convolutional Network for Imputation

We proposed a graph attention convolutional network (GACN) for traffic data
imputation in this paper. As shown in Fig. 2, GACN has an encoder-decoder
structure, where the encoder extracts the traffic characteristics, and the decoder
recovers the input sequence. Both the encoder and the decoder are composed of
two spatial-temporal blocks (ST block). In each block, there is a graph attention
layer for feature extraction in the spatial dimension and a standard convolutional
layer for time-series modeling along the temporal dimension. Specifically, blocks
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Fig. 2. Structure of the proposed graph attention convolution network.

in the encoder apply convolution layers, which perform merging and learn tem-
poral characteristics. Blocks in the decoder apply deconvolution layers, which
recover the internal features to their original size.

As illustrated in Fig. 2, the input X of GACN is the observation from a
specific region embedded on a graph. Each node has the observation from a
sensor in a day, which is denoted as x; = {z},2?,...,2] }. The red points are
missing points which are set to zero in X. And the output of GACN is a graph
that has the identical size of the input. The missing positions may change on
different timestamps (i.e., in Fig. 2, the red points are on different nodes in
different timestamps). We define the reconstruction loss L(S,Y) of GACN as
the mean squared error between input and output feature maps. Let the network
parameters be 6, the objective of the training is to minimize the reconstruction
loss as follow,

argmin L(S,Y) = argminZHsg — 47|12 (5)
0 0 L

Note that this reconstruction loss is different from the imputation error men-
tioned in Eq. 4. As shown in Fig. 1, reconstruction loss is calculated on the entire
output with dark shadow while imputation error is only calculated on the miss-
ing points. The reason is that missing positions may change on different days. In
the training stage, instead of only focusing on the missing points, we pay more
attention to learn the correlation and distribution from the entire observation.
The network parameter can be optimized by gradient descent algorithms.

3.3 Spatial Graph Attention

The traffic condition of a road section is changing over time. In addition, it is af-
fected by adjacent road sections. Such highly dynamic influence poses challenges
in spatial modeling. To address this issue, we apply the graph attention network
(GAT) [13] to learn the spatial correlations. GAT captures dynamic spatial cor-
relations by applying a self-attention strategy and calculating dynamic weights
between vertexes.

The input of a graph attention layer can be denoted as H = {hq, ha, ..., hn},
where N is the number of vertexes, h; € R represents each vertex that has
F-dimension features. As mentioned in the above section, each sensor has T
observed values in a day, i.e., T-dimension features. Thus, the input of the first
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graph attention layer in GACN is X € RVXT, which is with missing points.
Since the temporal features are captured by convolutional layers, we set the
output dimension the same as the input dimension for all graph attention layers
in GACN. With a weight matrix W € RFXF | the graph attention layer can
transform the input to the output feature space. Consequently, the attention
coefficient e;; is calculated by a self-attention mechanism a : RT x RT — R,

CZ‘]‘ = a(Whi, Wh]) (6)

The coefficient represents the influence of vertex j on vertex i. Generally, every
vertex in the graph affects each other. However, calculating coefficients in the
entire graph can be expensive. Thus, considering the graph topology, we only
compute the coefficients between adjacent vertexes. The hypothesis is that the
adjacent vertexes have more significant influence than non-adjacent vertexes.
The output h} is only affected by the input from adjacent nodes. Then, with
LeakyReLU [14] as the activation function, attention coefficients from neighbors
are normalized by softmax,

B exp(LeakyReLU(e;;))
~ Yrew, exp(LeakyReLU(ex))’

(7)

Ckij

where MN; is a set of adjacent vertexes of 7. To prevent overfitting, we randomly
dropout normalized attention coefficients in the training stage. Finally, the out-
put features of vertex i are updated by the attention coefficient and the input,
which is calculated by,

h; =0 Z OéijWhj s (8)
JEN;

where o(+) is a non-linear activation function. We apply exponential linear unit
(ELU) here, which is the same as in [13].

3.4 Temporal Convolution and Deconvolution

After the graph attention layer capturing the spatial information from adjacent
sensors, a canonical convolutional operation is performed on the temporal dimen-
sion. The convolutional layers are with vector-like convolutional kernels which
aggregate neighboring values in time-series. After the convolutional layers in the
encoder part transform the input into the internal feature maps, the decoder
restores the feature maps back to the original size. Besides convolution layers,
deconvolution layers perform reversed convolutions that restore the input. We
use LeakyReLU which is relatively simple in gradient calculation as the activa-
tion function [14]. Both the convolution and deconvolution layers are carefully
designed to ensure that the input and output time-series share the same size.
The specific hyperparameters of convolution and deconvolution layers are listed
in Table 1.
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Table 1. Settings of convolution and deconvolution layers

Layer Kernel Stride Padding Out Dimension

Convl 4 2 1 T/2
Conv?2 4 2 1 T/4
DeConvl 4 2 1 T/2
DeConv2 2 2 - T

4 Case Studites

In this section, we evaluate the performance of the proposed model by case stud-
ies. First, we introduce the dataset and detailed experiment settings. Then, we
conduct simulations with different missing scenarios and compare the proposed
model with other baselines.

4.1 Dataset

PeMSD7! is collected from District 7 in California Performance Measurement
System (PeMS). PeMS provides real-time and historical 5-min average traffic
speed data, which is applied in this study. There are in total over one thousand
sensors on the arterial roads of District 7. Similar to [18], we selected 231 sensors
from the central area, which have a more complicated spatial distribution. The
locations of 231 sensors are shown in Fig. 3a, which are in the downtown of
Los Angeles. The investigated time ranges from May 1, 2012, to June 30, 2012,
excluding weekends. No missing points are found in this period.
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(a) Location of sensors (b) Attention coefficients

Fig. 3. Sensor distribution of PeMSD7 and results of spatial attention mechanism.

! http://pems.dot.ca.gov/
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4.2 Experiment Configurations

We investigate two missing data types as mentioned in Section 3.1 in this study,

ie.,

random missing (RM) and block missing (BM). To investigate the proposed

model in typical missing scenarios as well as in extreme cases, we select a wide
missing rate range from 10% to 90% with 10% interval. For each sample, the
missing points are randomly erased according to the missing rate and missing
type. Then, the missing points together with the observations are fed into the
network. For cross-validation, we sequentially group 80% of the data for training,
10% for validation, and 10% for testing. For samples in both the training and
testing stage, the missing points are randomly erased ten times, i.e., the number
of input samples is enlarged ten times compared to the original dataset. Similarly,
the experiment is repeated ten times to reduce the impact of randomness when
evaluating the baselines.

The proposed network is trained by Adam optimizer [7]. The learning rate

starts at 0.0005 and is subsequently adjusted with a decay rate of 0.5. The
negative slope of LeakyReLU is set to 0.1. And the dropout layer in GAT is
with a dropout rate of 0.2. During the training stage, the batch size is set to 8.
Same as [18], the thresholds o2, ¢ in Eq. 1 are set to 10 and 0.5, respectively. The
model is iterated for 150 epochs. All experiments are implemented with PyTorch
and conducted on an NVIDIA GeForce RTX 2080Ti GPU.

The imputation accuracy is evaluated by Mean Absolute Percentage Error

(MAPE), which is defined as follows:

1 n
MAPE = Z

i=1

~

T — Iy

x 100%, (9)

Zq

where 7; is the imputed traffic speed at 4, and z; is the ground truth observation.

4.3 Baselines

We select the following imputation methods as a comparison of the proposed
model:

Historical Average (HA): In this paper, we average the previous 5 days
to estimate the missing values.

k-Nearest Neighborhood (k-NN): k-NN is a typical example of interpolation-
based methods. The imputation is performed by calculating the average value
of neighboring points [10]. In this paper, we set k = 4.

Support Vector Regression (SVR): We select SVR as a representative
of regression-based imputation methods [2].

Denoising Stacked Autoencoder (DSAE): We choose DSAE as an ex-
ample of imputation methods based on deep learning. In this paper, we use
the DSAE with the same hyperparameters in [4].

Bayesian Gaussian CP decomposition (BGCP): Based on probabilis-
tic matrix factorization, BGCP utilized variational Bayes and achieved better
performance compared to other tensor-based imputation methods [3].
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Fig. 4. Imputation results of the proposed GACN. (30% missing rate)

4.4 Experimental Results

Imputation Results The attention coefficients matrix is shown in Fig. 3b,
where the i-th row presents the spatial correlation between sensor i and each
other. As we constructed an undirected graph, the matrix is approximately sym-
metric. Since the graph attention is calculated on the adjacent nodes, the at-
tention matrix is sparse. To see the detailed imputation results, we randomly
select one sensor and visualize the imputation results using the proposed GACN
in Fig. 4. The black dot-dashed line is the ground truth observations, and the
red dotted line is the output of GACN. The missing points are marked as blue
crosses. In Fig. 4a where a random missing scenario is demonstrated, though
some sharp fluctuations are smoothed, the proposed model can accurately re-
cover the missing points as well as other observations. Compared to random
missing, block missing in Fig. 4b is more difficult. Although the imputed output
has the same overall trend as the ground truth, relatively large fluctuation with
continuous missing points is not restored well.

Performance Comparison Fig. 5 presents the performance comparison of the
proposed GACN and other baselines. In the comparison, we can have the fol-
lowing observations. First of all, GACN achieves the best imputation accuracy
in most scenarios and has similar results to other methods at low missing rates
(e.g., 10%). Secondly, for the same missing types, while other baselines’ perfor-
mance drops as the missing rate increases, the proposed GACN maintains its
outstanding recovery accuracy. The reason is that the proposed GACN learns the
overall traffic distribution by reconstruction loss. Methods like KNN and SVR,
which only focus on the missing points, can be effective when only a few points
are missing. Thirdly, all the methods have better performance in RM than BM,
which is in accordance with the results shown in Fig. 4. The proposed GACN has
relatively steady MAPE while other methods degenerate rapidly. This observa-
tion indicates that spatial correlations of adjacent sensors may provide auxiliary
information when missing points are continuously distributed.

5 Conclusion

In this paper, we propose a novel GACN for traffic data imputation. An undi-
rected graph is first utilized to represent the traffic network. Then, data impu-
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Fig. 5. Imputation MAPE (%) of different methods for different missing types.

tation is implemented by a graph attention convolutional network that follows
an encoder-decoder structure. Both the encoder and the decoder consist of two
stacked spatial-temporal blocks. In each block, a graph attention layer extracts
spatial correlations, and a convolution/deconvolution layer models temporal re-
lations of the traffic data. Comprehensive case studies are conducted to evaluate
the imputation accuracy of the proposed model. Specifically, we consider two
missing types and a wide missing rate range from 10% to 90%. Experimental
results show that the proposed method outperforms other imputation baselines
and maintains steady performance in extreme missing scenarios. In future stud-
ies, we plan to further improve the imputation accuracy by employing the missing
mask in the training stage.
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