
Applied Energy 365 (2024) 123252

A
0

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

ST-AGNet: Dynamic power system state prediction with spatial–temporal
attention graph-based network
Shiyao Zhang a, Shuyu Zhang a,∗, James J.Q. Yu b, Xuetao Wei c

a Research Institute for Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, 518055, China
b Department of Computer Science, University of York, York, YO10 5GH, United Kingdom
c Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China

A R T I C L E I N F O

Keywords:
Dynamic power system state
Graph-based network
Multi-time-scale prediction
Spatial–temporal relationship

A B S T R A C T

Accurate and timely prediction of power system states is one of the most important challenging tasks in modern
power systems. Considering the integration of renewable energy sources, recent deep learning-based models
have been well studied and found to have benefits in exploiting spatial–temporal relationships in power system
data. However, the complexity of different power system topology structures is not substantially captured since
the existing models did not fully consider the graph-based information retrieved from power networks. To
resolve the problem, a spatial–temporal attention graph-based network (ST-AGNet), an adaptive power system
state prediction approach that utilizes graph-based information data to account various typologies of complex
power systems, is proposed. Initially, the power flow model is used for generating historical system state data.
With the graph-based topology information, the input dataset with the spatial and temporal features is fed into
the proposed network for the training and validating process. Meanwhile, the connectivity of the time-varying
graph-based information are accounted in the proposed model. Case studies demonstrate the superiority of
the ST-AGNet model over the existing baselines under four different scales of complex systems, which can
significantly support dynamic power system analysis and operational tasks.
1. Introduction

In modern society nowadays, the emerging smart grid technology
is capable of providing innovative solutions to the development of
smart cities. In comparison to conventional smart grid systems, the
recent smart grid systems are more diversified due to technological
advancements, e.g., the increase of the utilization of various renewable
energy sources (RESs) and loads. However, the system uncertainty
issues still occur due to the erratic and intermittent nature of RESs and
loads. Although the use of RESs can help to reduce the environmen-
tal effects of global warming, the smart grid system may experience
rapid instability status, thereby affecting the system state variables. To
address this issue, it is essential to estimate the time-varying changes
of the system states so as to tackle the system uncertainties caused by
RESs and loads and further support the system operations and services.
Thus, a reliable system state prediction is considered an indispensable
factor in modern smart grid systems, which can benefit tasks such as
power control and energy management [1,2].

There are a number of research studies investigating system state
prediction for decades by using traditional statistical methods, e.g., an
extended Kalman filter [3], statistical Gaussian mixture model [4],

∗ Corresponding author.
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and non-parametric prediction method [5]. Owing to the acquisition
of massive dynamic system state data in dynamic power systems,
data-driven machine learning approaches become emerging solution
to address potential non-linear features in the system. In particular,
deep learning approaches, as a subset of machine learning approaches,
are capable of extracting latent features through neural networks. The
precise prediction results are beneficial to assist the power system
operations for the purpose of stability assessment, e.g., [6–9]. Owing
to the nature of time-varying RESs and loads, the implementation of
long short-term memory (LSTM)-based tools can accurately capture
the dynamic temporal features [8,9]. Additionally, to facilitate the
spatial measurement data, the use of convolutional neural network
(CNN)-based models can help handle spatial features in power sys-
tems, e.g., network topology considerations [6]. However, CNNs fail
to achieve precise predictions due to the changes in different complex
power system graph structures.

To address this point, graph neural networks (GNNs) become better
options than CNNs for capturing non-Euclidean spatial characteristics
from power networks due to the fact that power networks are gen-
erally formed as graph-structured information with high-dimensional
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characteristics and node inter-dependency, where common buses on
power systems are represented as nodes, and transmission lines are
represented as edges. To account for the complexity of graph-structured
data, deep graph neural networks have been the key tools of numerous
recent research publications [10]. As the massive spatial–temporal
system state data was acquired, several existing researchers designed
the models by combining recurrent neural networks (RNNs) and graph
convolutional neural networks (GCNs), e.g., [11–14].

However, the aforementioned research studies face notable chal-
lenges in the followings. First of all, the existing graph structure cannot
fully represent the adjacency of the common buses in complex power
systems. For example, the peaks and valleys of industrial and household
electricity usage are different. In this case, the relationship between
generator buses and load buses changes periodically over time. Then,
the effect of RESs is not sufficiently considered in the time-varying
complex power systems, whereas most studies unilaterally implement
homogeneous RESs. Furthermore, how to mine and utilize the spatial
and temporal dependencies of time-varying system states is still an
important question that needs to be answered. Last but not least, the
performance cannot be well optimized under complex power systems.
To address these challenges, we design a spatial–temporal attention
graph-based network (ST-AGNet) model to perform dynamic system
state prediction in power systems. The main contributions are shown
as follows.

1. Different from [6–9], that fail to capture the complexity of
different power system topology structures, we design a generic
ST-AGNet model by means of the graph-based information to
better excavate power networks with temporal properties.

2. Unlike the existing studies [11–13] that have explicitly inte-
grated the common bus (node) states with fixed topological
characteristics and temporal patterns, we propose an adaptive
graph to implement the adjacency of the common buses for
short-term multi-time-scale power system state predictions with
the consideration of heterogeneous RESs.

3. The self-attention mechanism in the proposed network is applied
to fuse the hidden spatial and temporal dependency at different
scales of feature modules to estimate the power states.

4. We evaluate the prediction results of the designed ST-AGNet
model through comprehensive case studies under different
power network topologies with other methods, which confirm
its optimal performance.

The following structure of this paper is organized below. The related
ork is introduced in Section 2. Section 3 shows the system model,
s well as the utilized power flow model. After that, the ST-AGNet
odel is then illustrated in Section 4. We assess the performance of the
roposed model under various power systems in Section 5. In Section 6,

we finally conclude this work.

2. Related work

In this section, we review previous efforts on dynamic power sys-
tem state prediction. In addition, the related traditional and filtering
methods are presented, as well as the recent deep learning approaches.

2.1. Traditional power system state prediction

The application of power system state prediction has been exten-
sively studied in recent years. Some conventional methods are adopted
in this research field, such as [3–5,15–17]. For instance, in [3], an
extended Kalman filter was proposed to monitor system state dynamics
rapidly and accurately. Considering the RESs, the real-time system mea-
surements were estimated by using a statistical Gaussian mixture model
developed in [4]. Besides, to identify the state condition that described
2

the system’s instability problem, a non-parametric prediction tool was i
adopted in [5]. For non-linear characteristics of power systems, [15]
adopted a multi-area power system with non-linear measurements
completely by distributed robust bi-linear state-estimation approach.
Then, [16] could address the ambiguity of the power system parameters
by a novel proposed mean squared estimator. Furthermore, [17] pro-
posed a distributed online estimation approach for tracking combined
heat and power system states. However, these traditional tools only
address apparent linear or non-linear system patterns, neglecting the
effect of hidden non-linear characteristics in power systems.

2.2. Time-series deep learning for power system state prediction

As the complexity of power networks increases, deep learning meth-
ods can be a good candidate to fully excavate the hidden non-linear
spatial and temporal features. There are several existing studies demon-
strating the effectiveness of deep learning approaches, e.g., [6–9].
Considering the temporal features in power systems, [7] compared
the widely used weighted least squares state estimation approaches
and developed a learning-based method that attempted to provide
efficient, robust, and extensive observability. Besides, [8] proposed
a swarm intelligence fusion model that combined data and physical-
driven approaches, which the LSTM network was employed to tackle
temporal features. In addition to the temporal features, the spatial
features are also necessary for system state prediction tasks. In this
case, [6] proposed a multi-level strategy for false data identification so
as to improve dynamic state prediction, whereas the three levels used
an invention vector, LSTM, and CNN. By implementing the network
topology as one crucial spatial feature, [9] developed a Bayesian LSTM
network to estimate the system states in various scales of systems.
However, these recent studies destroy the non-Euclidean structure of
power networks.

2.3. Graph learning-based prediction

Graph-based neural networks, a more modern substitute, offer a su-
perior option for maintaining the connectivity and adjacency informa-
tion of power networks. Several existing researches have investigated
the use of graph-based neural networks on predicting dynamic system
states, e.g., [11–13,18,19]. For instance, [11] applied spatial–temporal
graph learning method to serve the power system physics, whereas
this work designed graph shift operator based on graph recursive
neural network (GRN) and GCN. Considering to capture the temporal
features, in [12], a recurrent graph convolutional network (RGCN) was
proposed to predict the system states, and it explicitly integrated the
bus (node) states with the structure information. Additionally, [14,18]
adopted graph neural networks to estimate the solar and wind out-
put, respectively, in which these two studies both accounted for local
spatial–temporal correlations of the power networks. Furthermore, [13]
evised a two-layer algorithm with event-insensitive Graph Attention
etwork (GAT) and LSTM to monitor the power system state and
inpoint the locations of events. In this work, phasor measurement
nits (PMUs) data with the magnitude and phase angle of an electri-
al phasor are converted into two-dimensional images with frequency
nformation for LSTM, while CNN is used to improve the feature gap
etween various occurrences. Last but not least, a novel graph-learning
ramework developed in [19], called deep-learning neural representa-
ion, was proposed to predict the system state trajectories in real-time.
owever, existing studies overlook the dynamic adjacency information
f common buses from a multi-timescale perspective. Additionally,
he utilization of auxiliary information like RESs and power loads as
ell as effective feature fusion modeling remain open questions. In

his work, we utilize the graph-based information by including the
djacency information of the common buses to perform multi-time-
cale predictions on dynamic power system states, and consider the

mpact of RESs and load information.
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3. Power flow model

In this section, we introduce and illustrate the mathematical deriva-
tions of dynamic system state in a general power system, including the
formulated AC power flow model. The details are shown as follows.

3.1. Dynamic power system state

Based on the graph theory, suppose  be the index set of nodes
and  be the index edges in the system. The entire power system
network can be modeled as a directed graph, in which it is modeled
as  = ( , ). In this case,  denotes the set of common buses and 
represents the set of transmission lines. By taking into account nodal
equations, the nodal admittance matrix can be expressed as  , and it
ollows:

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑦11 𝑦12 ⋯ 𝑦1| |

𝑦21 𝑦22 ⋯ 𝑦2| |

⋮ ⋮ ⋮ ⋮

𝑦
| |1 𝑦

| |2 ⋯ 𝑦
| || |

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (1)

where | | is the total number of network nodes. For each element 𝑦𝑖𝑗 ,
it can be calculated by 𝑦𝑖𝑗 = 𝐠𝑖𝑗 + 𝑗𝐛𝑖𝑗 , where 𝐠𝑖𝑗 ≥ 0 and 𝐛𝑖𝑗 ≤ 0,
are the conductance and susceptance of the transmission line (𝑖, 𝑗) ∈  ,
respectively. Besides, the related shunt capacitance is denoted as 𝑐𝑖𝑗 =
𝑐𝑗𝑖 and it is involved when obtaining (1).

In addition, we define the apparent local power inflow of each com-
mon bus 𝑖 as 𝑆𝑖 = 𝑃𝑖 + 𝑗𝑄𝑖, where it includes both active power inflow
𝑖 and reactive power inflow 𝑄𝑖. The local power inflows are tightly

related to the power generation dispatch. The system operational time
period is set as  , which is divided into a set  = {1,… , | |} of | |

ime slots. Since the system covers both the conventional and renewable
enerations for the active power generations, we designate the active
nd reactive power generation as 𝑃𝐺

𝑡 and 𝑄𝐺
𝑡 at time 𝑡 ∈  while 𝑃𝐿

𝑡
nd 𝑄𝐿

𝑡 are set as the active and reactive loads, respectively. Thus, we
ave:

𝑖,𝑡 = 𝑃𝐺
𝑖,𝑡 − 𝑃𝐿

𝑖,𝑡 , ∀𝑖 ∈  , 𝑡 ∈  , (2)

𝑖,𝑡 = 𝑄𝐺
𝑖,𝑡 −𝑄𝐿

𝑖,𝑡, ∀𝑖 ∈  , 𝑡 ∈  . (3)

Furthermore, for any two 𝑖, 𝑗 buses in the system, we denote the
omplex power flow as 𝑆𝑖𝑗 = 𝑃𝑖𝑗 + 𝑗𝑄𝑖𝑗 , in which it covers both active
ower flow 𝑃𝑖𝑗 and reactive power flow 𝑄𝑖𝑗 . The relationship between
he complex power inflow at common bus 𝑖 and its nearby power flow
s represented as:

𝑖( ) =
∑

𝑗∈𝛺𝑖

𝑆𝑖𝑗 ( ), ∀𝑖, 𝑗 ∈  , (4)

here 𝛺𝑖 denotes the set of nearby transmission lines connected at
ommon bus 𝑖.

For the purpose of the power flow analysis, the essential elements
re utilized to be determine, including each common bus’s voltage mag-
itude, phase angle, active power inflow, and reactive power inflow.
e represent the common bus voltage magnitude at common bus 𝑖 as

𝑉𝑖| with its phase angle as 𝜃𝑖. In this case, a total of 2| | − 1 state
ariables are explicitly included in the system’s common bus voltage,
omprising  voltage magnitudes and  −1 phase angles, where each
ommon bus’s phase angle is specified in regard to the common bus
eference. Therefore, we define the state vector of the common bus 𝑖 as
𝑇
𝑖 , in which it includes the four main essential elements in the system,
hown as:
𝑇
𝑖,𝑡 =

[

|𝑉𝑖,𝑡| 𝜃𝑖,𝑡 𝑃𝑖,𝑡 𝑄𝑖,𝑡
]

, ∀𝑖 ∈  , 𝑡 ∈  , (5)

here (⋅)𝑇 is the operator for the transpose of the matrix. Based on (5),
he dynamic state matrix is shown as:

=

⎡

⎢

⎢

⎢

⎢

𝑥11 𝑥12 ⋯ 𝑥1| |

𝑥21 𝑥22 ⋯ 𝑥2| |

⋮ ⋮ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

. (6)
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| || |⎦

a

.2. Power flow analysis

The AC power flow model is used to obtain the real measurements
or the system states. As previously noted, the dynamic state matrix in
6) is developed to aggregate with all features of the input dataset.

The assessment of a general power system state involves the utiliza-
ion of efficient power flow model. There are three typical AC power
low models utilized, shown as:

• Newton–Raphson power flow model [20];
• Gauss–Seidel power flow model [21];
• Fast decoupled power flow model [22].

By comparing the above three methods, since this work considers
complex power network system, it is demonstrated that the suitable
odel is Newton–Raphson power flow model because it can compute

ccurate solutions on large complex systems.
By using the power flow model, the non-linear equation is used to

epresent the fulfillment of the AC power balance condition, shown as

(𝐗) =
[

𝛥𝐏
𝛥𝐐

]

= 𝟎, (7)

here 𝟎 is the matrix with zero values.
The overview of solving Newton–Raphson power flow problem

s introduced in the followings. For each iteration 𝑘, 𝛥𝐏𝑘 and 𝛥𝐐𝑘

re gained by following [23]. Then, the system Jacobian matrix is
alculated so as to compute 𝛥|𝐕𝑘

| and 𝛥𝜽𝑘. Lastly, the dynamic state
atrix (6) is obtained. During the iteration procedure, the tolerance of

he convergence is checked. Once the stopping criterion 𝜖 ≤ 10−5 is
et, the final solution 𝐗 = 𝐗𝑘∗ is updated when 𝑘∗ is the value of the

ast iteration number.

.3. Problem definition

We define the state prediction as a spatial–temporal prediction task,
onsidering the spatial structure and temporal dependency of the power
ystem. As mentioned in Section 3.1, the power system network is
odeled as a directed graph  = ( , ) and the related problem is

ormulated as
[

𝑋𝑡− +1,… , 𝑋𝑡;;;
] 𝑓 (⋅)
⟶

[

�̂�𝑡+1,… , �̂�𝑡+
]

(8)

here  is the length of the predicted data, and 𝑓 (⋅) is the prediction
unction.

. Spatial–Temporal Attention Graph-based Network (ST-AGNet)

In this section, we begin by introducing the overall structure of
he proposed model, referred to as the ST-AGNet. The primary focus
f ST-AGNet lies in leveraging temporal convolutional operations and
daptive graph neural networks to extract temporal and spatial features
rom the states in the power system. Following that, we delve into the
esign principles and roles of each module within ST-AGNet, alongside
n explanation of the training approach employed for the proposed
odel.

.1. ST-AGNet

This study introduces an advanced model named the Spatial-
emporal Attention Graph-based Network (ST-AGNet) to represent the
patial–temporal relationship of the power system state. The model
ffectively captures the changing dynamics of the system states in the
ower system, taking into account the influence of various renewable
nergy sources (RESs) and the fixed relationship between common
uses in complex power systems. The overall structure of ST-AGNet
s shown in Fig. 1.

In each layer, the feature module takes the power system states

s input, and then pairs the feature dimensions through convolution
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Fig. 1. Overall structure of the proposed ST-AGNet. The proposed ST-AGNet has a stacked structure. In each layer, there are three main modules, namely, the feature module,
bus module, and power module, for each kind of statistical data, including historical states, the admittance matrix, and RES from the power system. In addition, a fusion module
for combining the hidden features is used to predict the states in the future.
operations. After that, it performs feature extraction using Temporal
Convolutional Network (TCN) [24] and GCN operations for temporal
and spatial feature extraction, respectively. To better capture changing
system states in a day, we construct a learnable adjacency matrix as
input to the GCN by building separate relation matrices for different
times of the day and back-propagating to obtain the relation matrix
across all times. Similar to the feature module, the bus module also uses
TCN and GCN for spatial–temporal feature extraction, but the input to
its graph convolution is the bus relation matrix that is derived from
the transmission line matrix  . Given the timing dependence of RESs
and loads, the power module performs feature extraction solely using
TCN. After extracting the hidden states from the above three modules,
we proceed to combine the resultant feature sets, namely 𝐹 𝑙+1

𝑓 , 𝐹 𝑙+1
𝑏 ,

and 𝐹 𝑙+1
𝑝 , in order to derive the output for the layer, denoted by 𝐹 𝑙+1.

We also apply skip connections to avoid vanishing gradients when the
proposed network is sufficiently deep, which is formulated as:

𝐹 𝑙+1 = 𝐹 𝑙+1
𝑓 + 𝐹 𝑙+1

𝑏 + 𝐹 𝑙+1
𝑝 + 𝐹 𝑙 . (9)

Subsequently, a fusion module, equipped with a self-attention mech-
anism and linear layers, combines the hidden features from each layer
to make predictions about future states.

4.2. Feature module

In power systems, the power flows between buses can vary based on
the time of day. For instance, the peaks and valleys in industrial and
household loads follow different patterns. As a result, the relationships
between generator and load buses change periodically over time. To en-
able multi-timescale predictions of power system states, we construct a
adaptive graph to model the time-varying adjacency between common
buses.

In the feature module, we first apply TCN to extract temporal fea-
tures from the historical states. TCN is a variant of CNN that can capture
long-term dependencies in time series data. Compared to recurrent
neural networks used on traditional time-series tasks [25], the TCN
layer with dilated operation [26] is able to reduce time complexity
significantly. Besides, the gating mechanism demonstrates proficiency
in modeling sequence data, as it is employed in the temporal convo-
lution layer to enhance the capability of the model. In particular, the
formulation of TCN for the 𝑙th layer in the feature module is in the
form:

𝐻 𝑙 = tanh
(

𝑊 𝑙 ∗ 𝐹 𝑙
)

⊙ 𝜎
(

𝑊 𝑙 ∗ 𝐹 𝑙
)

, (10)
4

𝑓 𝑓 𝑔
where 𝐹 𝑙 is the output feature of the 𝑙th layer, which combines the
feature from three modules from previous layer, 𝑊 𝑙

𝑓 and 𝑊 𝑙
𝑔 are the

convolutional kernels of the temporal convolution layer, ⊙ symbolizes
the element-wise multiplication, ∗ represents the dilated convolution
operation, and 𝜎 denotes the sigmoid function.

The spatial relationship between the buses is also crucial for the
power prediction task. In this way, we adopt GCN to extract spatial fea-
tures from the states. Different from the traditional GCN, we construct a
learnable adjacent matrix to be used as the input for GCN, i.e., we build
a learnable relation matrix 𝑓 = {𝑓1,𝑓2,… ,𝑓𝑇 } for 𝑇 moments of
a day separately. For example, if the sampling interval of the sensor
is 15 min, there are 𝑇 = 96 time slots in a day, and we will train
96 adjacency matrices 𝑓 for different time slots for the subsequent
task. Then, we update the relation matrix 𝑓 for different moments via
back-propagate. The formulation of GCN for the 𝑙th layer in the feature
module is in the form:

𝐹 𝑙+1
𝑓 =

𝑈
∑

𝑢=0

(

𝑓𝑡
)𝑛 𝐻 𝑡

𝑙𝑊
𝑢, (11)

where 𝐹 𝑡
𝑙+1 is the output of the 𝑙th layer in feature module, 𝑓,𝑡 is the

relation matrix at time 𝑡, 𝑊 𝑢 is the weight matrix of the 𝑢th order, and
𝑈 is the order of the graph convolution.

4.3. Bus module

Similarly, the bus module uses TCN and GCN for spatial–temporal
feature extraction. However, the input to its graph convolution is the
bus relation matrix 𝑏 = {𝛼𝑖𝑗}× derived from the transmission line
matrix  . Specifically, different from the feature module, spatial feature
extraction is mainly based on the physical connection relationship
between different buses in the power system. And the connectivity
between 𝑖th bus and 𝑗th bus 𝛼𝑖𝑗 is defined as:

𝛼𝑖𝑗 = 𝑊𝑖𝑗 ∗ (𝐠𝑖𝑗 ,𝐛𝑖𝑗 ) + 𝑏𝑖𝑗 , (12)

where 𝑊𝑖𝑗 and 𝑏𝑖𝑗 are the weight and bias of the embedding layer
of the 𝑖𝑗-th element in  . Note that 𝐠𝑖𝑗 and 𝐛𝑖𝑗 are the conductance
and susceptance of the 𝑖𝑗-th transmission line, respectively. Using this
adjacency matrix, a GCN is then applied to extract spatial features from

the states.
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4.4. Power module

For the dynamic power system state prediction, power information
shall provide auxiliary information. Given the timing dependence of
RESs, the power module first performs feature expansion through linear
operations. The formulation is:

𝐻 𝑙
𝑙 = 𝑊𝑙𝐹

𝑙
𝑙 + 𝑏𝑙 , (13)

where 𝑊𝑙 ∈ R𝑓𝑝×𝑁 and 𝑏𝑙 are the weight and bias of the 𝑙th layer in the
power module, 𝑓𝑝 is the feature dimension of the power information,
and 𝑁 is the number of buses. Then, the TCN is used to extract temporal
features from the hidden states 𝐻 𝑙

𝑙 .

4.5. Fusion module

In order to combine the spatial–temporal features obtained from
the feature module, bus module, and power module, we provide a
fusion module. This module incorporates a self-attention mechanism
and linear layers to merge the hidden features from each layer and
make predictions about future states. Infusion module, to leverage
the hidden feature in various levels, we first concatenate the output
hidden features from different layers as  = [𝐹 1

𝑓 , 𝐹
2
𝑓 ,… , 𝐹 𝑙

𝑓 ], 𝑙 is
the number of layers, and then apply a self-attention mechanism to
fuse the hidden features. The self-attention was first proposed in [27]
for sequence data. It has been widely used in different areas, like
natural language processing, computer vision, and time-series data. In
this work, we apply the self-attention mechanism to fuse the hidden
features of each layer. The computation of the self-attention mechanism
involves three components: the query matrix , the key matrix ,
and the value matrix  . These matrices are obtained by multiplying
the input matrix  with the corresponding weight matrices 𝑊𝑞 , 𝑊𝑘,
and 𝑊𝑣, respectively. The output  of self-attention mechanism can be
computed by:

 = sof tmax(
𝑇

√

𝑑𝑘
) , (14)

where 𝑑𝑘 is the dimension of the key matrix . After that, we apply the
linear layers to fuse the output and predict the dynamic system states
in the future.

4.6. Loss function

When training a deep learning model, its parameters are refined
to optimize its performance by minimizing the loss function. This
process is facilitated by optimization algorithms like gradient descent,
which iteratively adjust the model’s parameters in accordance with
the gradient of the loss function. Moreover, the loss function serves
as a quantitative metric of our model’s performance. It steers the
optimization process towards reducing the gap between the model’s
predictions and the actual states, thereby improving the accuracy of
the model’s predictions.

Following the previous deep learning-based models [9,11] for the
dynamic power system state prediction task, we apply the mean
squared error (MSE) as the loss function to optimize the parameters
of the proposed ST-AGNet model, which is defined as

 = 1


1



∑

𝑖=1


∑

𝑡=1
(�̂�𝑖,𝑡 − 𝑥𝑖,𝑡)2, (15)

where  is the number of buses,  is the number of predicted time
slots, �̂�𝑖,𝑡 is the predicted state of the 𝑖th bus at the 𝑡th time slot, and
5

𝑥𝑖,𝑡 is the corresponding ground truth state.
5. Case studies

This section presents case studies demonstrating the proposed ap-
proach. First, the configurations of the test systems are introduced.
Next, we present the baseline as well as the prediction performance.
To examine the roles of different modules, ablation experiments were
conducted to evaluate their impacts. Furthermore, given practical ap-
plications, we assessed the time costs of the proposed model. Finally,
the influence of noise on prediction accuracy is also discussed.

5.1. Test system configurations

In the simulation, we adopt four different scales of power sys-
tems [28] for case studies, including IEEE 30-Bus, IEEE 57-Bus, IEEE
118-Bus, and IEEE 145-Bus systems. For each power system, we extract
the information of buses and bus lines following the IEEE Common Data
Format.1 The details of the four test systems are as follows:

• IEEE 30-Bus System: The system comprises a total of 30 buses
and 41 transmission lines. The solar and wind generators are
deployed at Bus 2 and 10 in the test instances, respectively.

• IEEE 57-Bus System: The system comprises a total of 57 buses
and 80 transmission lines. The solar and wind generators are
deployed at Bus 13 and 37 in the test instances, respectively.

• IEEE 118-Bus System: The system comprises a total of 118 buses
and 186 transmission lines. The solar and wind generators are
deployed at Bus 49 and 69 in the test instances, respectively.

• IEEE 145-Bus System: The system comprises a total of 145 buses
and 153 transmission lines. The solar and wind generators are
deployed at Bus 17 and 69 in the test instances, respectively.

For the four systems, buses with the most transmission lines connected
were selected for installing solar and wind generators from differ-
ent areas. Additionally, historical power system data from [29] was
utilized. Specifically, time-varying system data over one year from
2016-01-01 to 2016-12-31 was used. The data was partitioned into
three distinct sets — training, validation, and test sets, comprising 60%,
20%, and 20% of the data by time, correspondingly. This separating
procedure is evaluated through cross-validation. The time interval of
sampling period of the system state is 15 min. In addition, sample
construction is performed separately on each dataset individually by
a sliding window. After that, the data is normalized to the range of
[0, 1] by Z-score. Furthermore, the adopted time-varying generations
nd loads are scaled to fit the above four test systems.

For comparison purposes, unless stated otherwise, all case stud-
es utilized the following configuration. The proposed ST-AGNet and
aseline models were implemented in Python with PyTorch. For deep
earning methods, models were trained for 100 epochs with a batch size
f 50, using a learning rate of 1𝑒−3. We utilized the Adam optimizer

for model optimization, and implemented early stopping to mitigate
the risk of overfitting. All tests were run on servers with an Intel(R)
Xeon(R) E5-2620 v4 CPU and nVidia GeForce RTX 2080 Ti GPUs.

5.2. Baseline models

In this work, we aim to develop sophisticated neural network ar-
chitectures tailored for power systems. In this way, except for the
advanced models proposed in the past years for states prediction, like
LSTM, LSTM-CNN, STGCN. We also have selected the most exemplary
models for spatio-temporal prediction and system state forecasting from
a variety of sectors such as power, energy, and transportation, which
have shown promise in recent years. Specifically, we compare the
proposed method with the following baselines:

1 http://labs.ece.uw.edu/pstca/formats/cdf.txt

http://labs.ece.uw.edu/pstca/formats/cdf.txt
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• GW-Net (2019) dynamically captures spatial dependencies by
learning an adaptive dependency matrix through node embed-
ding [30].

• Long Short-Term Memory (LSTM, 2021) employs a stacked
LSTM network to take the time-series input and predict the system
states [9].

• Dynamic and Multi-faceted SpatioTemporal Graph Convolu-
tion Network (DMSTGCN, 2021) is a variant of GCN that uses a
dynamic graph convolutional network to capture the time-varying
relationship and estimate the states of a graphed system [31].

• Multivariate Time-series Graph Neural Networks (MTGNN,
2021) is a deep spatial–temporal model for multivariate time
series forecasting based on graph neural networks [32].

• LSTM-CNN (2021) employs a multi-level identification method
combining innovation vectors, Long Short-Term Memory, and
Convolutional Neural Network to detect false data and enhance
state estimation accuracy in power systems. [6]

• Spatial–Temporal Graph Convolutional Network (STGCN,
2022) applies vanilla GCN and GRN layers to predict the states.
It takes account of the fixed connectivity between buses in the
power system [11].

• Spatial and Temporal IDentity (STID, 2022) is a simple yet
effective method for multivariate time series forecasting based on
spatial and temporal identity information. It applies an identity
matrix to capture the spatial and temporal dependencies of the
system states [33].

• Spatial and Temporal Normalization (STNorm, 2022) applies
spatial and temporal normalization layers to improve the perfor-
mance of the spatial–temporal network [34].

.3. Compared approaches

To assess the performance of our proposed ST-AGNet method, we
ompare it with the above approaches on the following metrics: root
ean square error (RMSE) and mean absolute error (MAE), considering

here are negative values of the power systems’ states. The RMSE and
AE are defined as follows:

MSE =

√

√

√

√ 1


1



∑

𝑖=1


∑

𝑡=1
(�̂�𝑖,𝑡 − 𝑥𝑖,𝑡)2, (16)

MAE = 1


1



∑

𝑖=1


∑

𝑡=1

|

|

�̂�𝑖,𝑡 − 𝑥𝑖,𝑡|| , (17)

where  stands for the count of buses, while  denotes the quantity
of predicted time slots. �̂�𝑖,𝑡 represents the forecasted state of the 𝑖th bus
at the 𝑡th time slot, and 𝑥𝑖,𝑡 corresponds to the actual state.

5.4. Prediction results

To assess the model comprehensively, we compare the proposed ST-
AGNet model on the four different scales of power systems with the
mentioned the-state-of-arts with RMSE and MAE. Besides, to evaluate
the performance of the proposed model on different time scales, we
predict the system states in the next 1, 2, and 3 hours; that is, the
predicted time slot  is {4, 8, 12}.

Tables 1, 2, 3, and 4 present the prediction accuracy of various
methods across the four datasets. As demonstrated in these tables, the
proposed model outshines the other baselines on all four datasets. As
one might expect, the task of forecasting grows incrementally more
challenging as the prediction window extends, subsequently leading to
a dip in the prediction accuracy across all models. Hence, in real-world
applications, a careful trade-off consideration between the prediction
accuracy and the prediction window is necessary.

In addition, most of the spatio-temporal models achieved better
predictive structure compared to LSTM and LSTM-CNN, indicating
6

Table 1
Comparison with different methods on IEEE 30-Bus system.

Methods 1h 2h 3h

RMSE MAE RMSE MAE RMSE MAE

GW-Net 0.0017 0.0008 0.0025 0.0012 0.0033 0.0015
LSTM 0.0033 0.0020 0.0040 0.0024 0.0048 0.0027
DMSTGCN 0.0018 0.0009 0.0024 0.0012 0.0029 0.0014
MTGNN 0.0019 0.0009 0.0026 0.0012 0.0034 0.0016
LSTM-CNN 0.0025 0.0014 0.0030 0.0016 0.0036 0.0019
STGCN 0.0022 0.0013 0.0028 0.0014 0.0037 0.0019
STID 0.0143 0.0091 0.0173 0.0106 0.0188 0.0115
STNorm 0.0020 0.0010 0.0026 0.0013 0.0032 0.0016
ST-AGNet 0.0014 0.0006 0.0022 0.0009 0.0030 0.0013

Table 2
Comparison with different methods on IEEE 57-Bus system.

Methods 1h 2h 3h

RMSE MAE RMSE MAE RMSE MAE

GW-Net 0.0073 0.0033 0.0075 0.0035 0.0082 0.0039
LSTM 0.0219 0.0128 0.0185 0.0109 0.0238 0.0142
DMSTGCN 0.0081 0.0041 0.0089 0.0044 0.0090 0.0046
MTGNN 0.0075 0.0036 0.0086 0.0045 0.0095 0.0048
LSTM-CNN 0.0109 0.0071 0.0114 0.0075 0.0118 0.0078
STGCN 0.0133 0.0072 0.0147 0.0080 0.0128 0.0079
STID 0.0292 0.0199 0.0327 0.0222 0.0351 0.0239
STNorm 0.0076 0.0041 0.0075 0.0042 0.0122 0.0048
ST-AGNet 0.0039 0.0011 0.0046 0.0014 0.0050 0.0017

Table 3
Comparison with different methods on IEEE 118-Bus system.

Methods 1h 2h 3h

RMSE MAE RMSE MAE RMSE MAE

GW-Net 0.0109 0.0058 0.0148 0.0069 0.0209 0.0092
LSTM 0.1113 0.0552 0.1303 0.0645 0.1186 0.0595
DMSTGCN 0.0150 0.0072 0.0172 0.0085 0.0200 0.0094
MTGNN 0.0251 0.0123 0.0335 0.0163 0.0342 0.0159
LSTM-CNN 0.0517 0.0270 0.0528 0.0273 0.0573 0.0294
STGCN 0.0387 0.0194 0.0376 0.0188 0.0426 0.0209
STID 0.0535 0.0354 0.0586 0.0392 0.0651 0.0427
STNorm 0.0261 0.0140 0.0291 0.0153 0.0354 0.0184
ST-AGNet 0.0100 0.0041 0.0146 0.0059 0.0204 0.0085

Table 4
Comparison with different methods on IEEE 145-Bus system.

Methods 1h 2h 3h

RMSE MAE RMSE MAE RMSE MAE

GW-Net 0.0298 0.0130 0.0271 0.0131 0.0357 0.0149
LSTM 0.1084 0.0486 0.1258 0.0569 0.1248 0.0580
DMSTGCN 0.0445 0.0167 0.0457 0.0197 0.0468 0.0184
MTGNN 0.0333 0.0152 0.0336 0.0160 0.0388 0.0170
LSTM-CNN 0.0415 0.0254 0.0521 0.0285 0.0504 0.0285
STGCN 0.0514 0.0193 0.0449 0.0232 0.0523 0.0234
STID 0.1300 0.0742 0.1399 0.0804 0.1484 0.0858
STNorm 0.2226 0.0609 0.2333 0.0610 0.2154 0.0656
ST-AGNet 0.0155 0.0094 0.0236 0.0147 0.0286 0.0144

that spatial information is crucial for the state prediction problem
It is noteworthy that our selection predominantly consisted of deep
learning methods, including other spatial–temporal prediction models
and prior system state prediction models. Our model attained the most
superior prediction outcomes, illustrating that our network structure is
particularly well-suited for the state prediction task of power systems.

In addition, the accuracy of the proposed models in predicting the
power system decreases as the size of the power system increases.
This difference can be attributed to their more complex topology,
which makes it more challenging to predict future system states. As
a result, the effectiveness of different models decreases to some extent.
However, our proposed ST-AGNet still achieves the best prediction
accuracy, with the main model being able to capture the spatial and
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Fig. 2. The predicted states curve of IEEE 57-Bus System on bus 37.

temporal dependencies of the system state from different dimensions,
which are fused and predicted.

5.5. Prediction result visualization

In this section, we delve deeper into the monthly dynamic system
state variables of each common bus, with a particular emphasis on bus
37 where the solar power generation is integrated. We visualize the
data for the entire month of December and three days, which encom-
passes both the real data and the prediction outcomes with prediction
windows of 4, 8, 12, respectively. Concurrently, we document both the
phase angle and the voltage magnitude of this bus. The normalized
results are depicted in Fig. 2.

As can be discerned from the fluctuating curves, when the predic-
ion time window is set at 4, the model more accurately represents the
rend of real values for the phase angle at bus 37. This superior fit
an largely be attributed to the longer forecast time window, which
nevitably results in an accumulation of errors and aligns with the
ccuracy result illustrated in Table 2. Moreover, in Fig. 2, a majority

of the predicted values closely align with the real values for both the
voltage magnitude and phase angle at bus 37. Similar findings can also
be observed at bus 13, where wind power generation is integrated.

Upon further scrutiny of Fig. 2, it is evident that the prediction
outcomes effectively mirror the daily changes in the states of power
system, despite the occasional mismatches between sudden fluctuations
in predicted and actual values at a detailed level, which are particularly
noticeable at  = 12. This effectively illustrates the proficiency of the
ST-AGNet network in capturing spatial–temporal features within the
7

power system.
Fig. 3. The performance of ablation test on the IEEE 57-Bus System.

5.6. Ablation study

In the subsequent subsection, we conduct comprehensive ablation
studies to assess the influence of each module on the overall perfor-
mance of the model. To ensure objectivity, the configurations used for
training and testing in these case studies mirror those outlined in 5.1.
For ease of understanding, we refer to the original ST-AGNet model as
‘vanilla’, and scrutinize the following four ST-AGNet variants:

• ‘w/o fusion’: The ST-AGNet model is without fusion module.
• ‘w/o power’: The ST-AGNet model without power module.
• ‘w/o bus’: The ST-AGNet model without bus module.
• ‘w edges’: Replace the graph 𝑏 in bus module by the connections

of buses in real-world.

Fig. 3 shows the prediction accuracy of different variants of the
ST-AGNet model on the IEEE 57-Bus System with all predicted time
windows. The results of the ablation study clearly show that each
module of the ST-AGNet model contributes to its prediction accuracy.
The fusion module, power module, and bus module all play a critical
role in the model’s ability to forecast states in the power system
accurately. The reduction in prediction accuracy when any of these
modules are removed emphasizes their importance in the design of the
ST-AGNet model and performance.

In addition, by comparing the ST-AGNet model with the ‘w edges’,
it can be observed that the use of a real-world bus connection graph
(w edges variant) instead of the graph 𝑏 in the bus module leads to
a decrease in prediction accuracy. This suggests that the transmission
matrix  utilized in the ST-AGNet model is more effective at capturing
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Table 5
Time consumption (s) comparison with different methods.

Methods 30-Bus 145-Bus

Training Inference Training Inference

GW-Net 71 5 503 48
LSTM 5 2 11 3
DMSTGCN 165 15 360 40
MTGNN 102 8 540 32
STGCN 36 3 195 17
STID 26 3 57 5
STNorm 102 8 576 56
ST-AGNet 114 9 886 89

the spatial relationships and dependencies between the buses than the
real-world bus connections. This demonstrates the importance of an
accurately constructed graph in graph-based models like ST-AGNet,
as it plays a crucial role in capturing the topological structure and
dependencies of the system.

5.7. Time consumption

Considering real-world applications, we compare the time overhead
of the different methods, including training and inference time. The
data in the Table 5 are the results on 30-Bus and 145-Bus, where the
training time is under per epoch and the inference time is around 7000
test samples. As can be seen from the table, LSTM has the shortest
training time and inference time, mainly due to its simple structure,
but the same leads to its lower prediction accuracy. In contrast, the
networks with complex structures, such as DMSTGCN, GW-Net, etc.,
have more extended training and inference times, but their prediction
accuracies are also relatively high.

The training time and inference time of the proposed ST-AGNet are
also longer, especially on 145-Bus, mainly due to its complexity as
it contains multiple graph structures, thus the time increase is more
significant. However, considering that our data sampling interval is
15 min, this time overhead is acceptable in practical applications.
In addition, the prediction accuracy of ST-AGNet is also the highest.
Therefore, the proposed ST-AGNet is feasible in practical applications.

However, in terms of time complexity, for a graph of 𝑛 nodes, the
time complexity of LSTM is 𝑂(𝑛), while the time complexity of GCN is
𝑂(𝑛2), so the increase in the time consumed by the model based on the
GCN network like the proposed ST-AGNet will be more pronounced as
the number of nodes increases. This needs to be taken into account in
large-scale power systems, even though the number of nodes in a power
system is limited in practical applications.

5.8. Noise analysis

In preceding case studies, we leverage the ground truth from four
power system datasets to assess and scrutinize the proposed model.
Nevertheless, the act of sampling unavoidably exposes the gathered
data to the influence of unwanted noise. In this subsection, we inten-
tionally introduce varying levels of noise to the input of the model to
evaluate its robustness within the context of the IEEE 57-Bus System.
Specifically, drawing on the methodology from previous work [35], we
generate Gaussian noise with a mean of 1 and standard errors ranging
among {2%, 4%,… , 20%}. This noise is then multiplied by the original
input. This implies that the average deviations from the ground truth
are 1%, 2%, . . . , and 10%, respectively.

Fig. 4 shows the prediction performance of the proposed ST-AGNet
models with three predicted time windows. The findings suggest that
higher levels of noise often result in increased MAE and RMSE, while
the affected data distribution patterns become more difficult to learn.
But it can be seen that even at 10% of noise, the proposed ST-AGNet
model still achieves a low MAE and RMSE under three scenarios,
which demonstrates the robustness of the proposed model to noise
8

interference.
Fig. 4. The predicted performance with noise on IEEE 57-Bus System.

Table 6
The performance of ST-AGNet with different hyper-parameters.

Learning rate Batch Size RMSE MAE

1e−2
25 0.0048 0.0019
50 0.0046 0.0020
100 0.0042 0.0017

1e−3
25 0.0042 0.0013
50 0.0039 0.0011
100 0.0044 0.0016

1e−4
25 0.0037 0.0010
50 0.0039 0.0009
100 0.0038 0.0010

5.9. Hyperparameter analysis

While hyperparameter selection is often deemed critical for model
performance. We conduct a case study based on the IEEE 57-Bus System
with a 1-hour prediction window to evaluate the impact of learning
rate and batch size on model performance. The results are shown in
the Table 6.

The table demonstrates a relatively stable performance across a
variety of learning rate and batch size configurations. Despite altering
learning rates by orders of magnitude, from 1e-2 down to 1e-4, and
adjusting batch sizes from 25 to 100, the RMSE and MAE metrics
exhibit only slight variations. The RMSE values remain within a tight
range of 0.0037 to 0.0048, while MAE values fluctuate minimally
between 0.0009 and 0.0020. These findings suggest that the early stop
mechanism and the robustness of the proposed model are effective in
maintaining performance despite the tested hyperparameter variations.
Avoiding the obvious impact of hyperparameter selection on model

results.
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6. Conclusion

In this paper, we propose a generic ST-AGNet for predicting dy-
namic power system states. Initially, the AC power flow model is
used for generating historical system state data. Then, both the spatial
and temporal features are aggregated into the input dataset of the
proposed neural network. Incorporating the graph-based information,
the complete input dataset is trained and tested via the proposed ST-
AGNet model in order to get accurate prediction results. Meanwhile,
the time-varying complex system topology structures can be sufficiently
captured, as well as the adjacency nodal information of the dynamic
graphs. The comprehensive experiments are conducted based on four
different scales of the systems. Compared with the baseline approaches,
more accurate results are obtained by the proposed ST-AGNet model.
In addition, we conduct an ablation test to verify the effectiveness
of the constituting elements in the proposed ST-AGNet. Furthermore,
empirical findings demonstrate that the proposed approach successfully
fulfills the time and robustness criteria for practical implementations.
Although the proposed ST-AGNet model is effective in predicting the
dynamic power system states, there are still some limitations. For
example, with the increase of nodes, the time consumed will increase
dramatically. In the future, we will focus on improving the computa-
tional efficiency of the model. Besides, how to utilize the seasonal and
yearly patterns to improve long-term prediction is also an important
direction for future research.
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