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Abstract—Crowdsourced navigation is becoming the prevalent
automobile navigation solution with the widespread adoption of
smartphones over the past decade, which supports a plethora of
intelligent transportation system services. However, it is subjected
to Sybil attacks that inject carefully designed adversarial GPS
trajectories to compromise the data aggregation system and cause
false traffic jams. Successful Sybil attacks have been launched
against real crowdsourced navigation systems, yet defending
such critical threats has seldom been studied. In this work, a
novel deep generative model based on Bayesian deep learning
is devised for Sybil attack identification. The proposed model
exploits time-series features to embed trajectories in a latent
distribution space, which serves as a basis for identifying ones
generated by Sybil attacks. Case studies on three real-world
vehicular trajectory datasets reveal that the proposed model
improves the performance of state-of-the-art baselines by at least
76.6%. Additionally, a hyper-parameter test develops guidelines
for parameter selection, and a fast training scheme is proposed
and assessed to boost the model training efficiency.

Index Terms—Sybil attack detection, crowdsourced navigation,
intelligent transportation systems, Bayesian deep learning, deep
generative model, cybersecurity.

I. INTRODUCTION

ITH the ever-increasing penetration of mobile devices
Wequipped with location-sensing technologies such as
GPS, crowdsourced navigation is rapidly becoming the preva-
lent approach for vehicular navigation [1]]. Crowdsourced
navigation systems, such as Google Maps and Waze, collect
real-time user navigation data to guide the routing of others.
Used by over two billion users worldwide, these systems
produce a massive scale of navigation data as a reliable source
of real-time traffic information, which is trusted and adopted
by a much wider community for services like trip planning and
congestion control [2]]. Therefore, crowdsourced navigation is
among the most critical and fundamental services of modern
intelligent transportation systems, whose cybersecurity is of
the utmost importance for smart city operation [3]]-[6].

Contemporary crowdsourced navigation systems, however,
are subjected to various attacks aiming to dramatically influ-
ence routing decisions. Among them, the Sybil attack is one
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of the most straightforward yet effective approaches, where
the adversaries compromise the data aggregation system by
creating a large number of pseudonymous identities and use
them to report forged navigation trajectories [7]. Carefully
designed adversarial trajectories are capable of circumventing
the bad data detection mechanism in navigation systems and
either creating false alarms on traffic jams or preventing
real ones from being recognized [8|]. Several studies have
been carried out on launching Sybil attacks to real-world
crowdsourced navigation systems with success, see [8]—[10]
for some examples. Successful Sybil attacks can notably
impair the stability of modern transportation systems. For
instance, a congested main road may attract more road users
to drive through if a Sybil attack compromised crowdsourced
navigation systems to consider the road under free-flow. Con-
sequently, the congestion is further aggrevated. Futhermore,
as the traffic is highly dynamic and correlated, one road
compromised may lead to potential breakdowns of the whole
transportation network. Properly identifying Sybil attacks is a
significant issue to be addressed in ITS.

Despite being a critical threat to intelligent transportation
systems, Sybil attacks on crowdsourced navigation systems
are not well countered in the literature. Limited results have
been published on defending such attacks, and they address
the problem from the identity validation [11]], traffic network
design [12]], or crowdsourcing reward [13]] viewpoints. As far
as we are concerned, there is no comprehensive investigation
in identifying such attacks by analyzing the characteristics of
user-reported trajectories, so that the navigation is still credible
even if the identity or reward systems are compromised. One
may note a similar problem that also exists when routing
vehicles, namely, anomalous trajectory detection [14]-[16].
Nonetheless, it aims to distinguish authentic vehicular trajecto-
ries of fixed source and destination locations that are generated
by real sensing devices but follow abnormal routes [16].
Another related research problem in the crowdsourcing context
is the truth inference problem where methods are proposed
to discover the correct observation to an event or correct
answer to a question [[17], [18]. A number of studies have been
carried out based on voting, optimization, probabilistic graph,
or neural networks for the problem [19], [20]]. However, their
application rely on the crowdsourcing users to answer the same
event or question [17]-[20]. In the crowdsourced navigation
context, this means that multiple vehicles shall report their
respective speeds at exactly the same geographical location
and time, which is not practical. Therefore, the respective so-
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lutions cannot be directly adopted to identify adversarial Sybil
attack trajectories. Furthermore, as crowdsourced navigation
systems aim to provide real-time traffic status to users and ITS
services, real-time vehicular trajectories are largely adopted in
developing such information. This imposes another challenge
to defend Sybil attacks: indentification in real time. If the
identifier cannot process incoming trajectories at a fast pace,
no real-time traffic information can be developed, rendering
crowdsourced navigation invalid.

To bridge this research gap, we present a self-supervised
deep learning approach for Sybil attack identification for
crowdsourced navigation in this work. The proposed model
is capable of learning the latent representation of trajectories
as multivariate random variables in latent trajectory space.
When the representation is adopted to reconstruct trajectories,
adversaries can be distinguished from authentic ones with
a credibility scoring scheme. To achieve this, we adopt the
recent advances of Bayesian deep learning [21]], [22] and
deep generative model theories to construct an intelligent
identification deep learning model. In the model, a Long
Short-Term Memory (LSTM)-like architecture is employed to
learn the temporal data correlation within raw data, and the
incorporated Bayesian inference principle helps the model to
capture the stochastic uncertainties in trajectories. The main
contribution of this work is summarized as follows:

e We devise a novel deep generative model for capturing
the sequential characteristics of vehicular trajectories with
measurement and displacement uncertainties, and repre-
senting them in a latent trajectory space as multivariate
random variables.

« We propose a novel Sybil attack identification algorithm
based on the proposed deep learning model, which is
among the pioneer efforts of detecting Sybil attacks in
crowdsourced navigation from the trajectory viewpoint.

o We create a novel fast training scheme for the proposed
deep learning model based on trajectory clustering, which
follows the nature of aggregating regional trajectories and
demonstrates sub-linear speedup with parallel training.

e We design a comprehensive evaluation procedure on
three large-scale real-world vehicular trajectory datasets
to show the efficacy of the proposed model.

The remainder of this paper is organized as follows. Sec-
tion [[] presents the definition of the Sybil attack trajectory
identification problem in crowdsourced navigation. Section
elaborates on the architecture of the proposed deep generative
model with a comprehensive analysis of its training and infer-
ence. Section [[V|introduces the attack identification algorithm
based on the proposed model and the fast training scheme.
Section [V] demonstrates the numerical results of case studies
with detailed discussions. Finally, this paper is concluded in
Section V1l

II. SYBIL ATTACK IDENTIFICATION

In crowdsourced navigation, traffic states are estimated
using GPS trajectories generated by users [[1]]. Sybil attack
adversaries compromise the data aggregation system by cre-
ating pseudonymous identities and provide forged trajectories

to the service providers [7]. By employing a large volume
of these identities, a disproportionately large influence can
be attained, enabling the adversaries to manipulate the traffic
state at will by submitting adversarial trajectories. The Sybil
attack identification problem aims to precisely identify these
trajectories so that the system integrity does not tamper.

Formally, a GPS trajectory is defined as a sequence of
chronologically ordered points R = {ry — ro — -+ = r,},
where 7, is the t-th GPS record within the trajectory com-
posed of latitude and longitude measurements lat;, Ing, as
well as a sampling timestamp ts;. From the start location
li = (laty,Ing;) to the end location I, = (lat,,Ing,),
there are typically multiple authentic or rational trajectories
with particular displacement dynamics that are generated by
normal driving behaviors under the respective transient traffic
conditions. Others that do not follow the dynamics can be
considered adversarial trajectories. Given a trajectory R € R
where R is the set of all trajectories in the given dataset,
its probability of being traveled and subsequently contributing
to crowdsourced navigation is defined as Pr(R Let the set
of rational trajectories be R* C R in which the trajectories
follow the “rational” definition given above, the probability
of an arbitrary trajectory R following the authentic dynamics
is given by Pr(R|R*). Consequently, whether a trajectory
is adversarial can be developed from it: a lower Pr(R|R*)
indicates a higher probability of an adversarial R.

With the above definitions and notations, Sybil attack iden-
tification discovers the rational displacement dynamics and
calculates the probability of R following it, i.e., Pr(R|R*).
The primary challenge of this problem is twofold. First
and foremost, massive stochastic uncertainty exists in GPS
trajectories even authentically generated. Developing proper
and precise displacement dynamics out of the noisy raw data
is a challenging task to be addressed. Second, the historical
trajectories are typically of heterogeneous lengths, and ones
with the same origin and destination coordinates can be rare.
This requires the identifier to capture the latent displacement
dynamics within a region instead of learning the travel pat-
tern between fixed origin-destination pairs as did in previous
anomalous trajectory detection research.

III. SELF-SUPERVISED BAYESIAN RECURRENT
AUTOENCODER

To overcome these challenges while identifying adversarial
trajectories with efficacy, we propose a novel solution for
online Sybil attack identification based on deep learning,
named Bayesian Recurrent Autoencoder (BRAE). This model
is inspired by recent studies on Bayesian deep learning and
deep generative model and tries to combine the merits of
both for solving the problem. By representing trajectories as
multivariate random variables in a latent trajectory space, the
model is capable of modeling the probability distribution of
authentic trajectories. Therefore, the model does not require
explicit knowledge on the model of Sybil attacks. BRAE can

By abuse of notation, we use R to denote all locations I; of the trajectory
in the sequel.
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Fig. 1. Overview of BRAE.

be trained by self-supervised learning with authentic and unla-
beled trajectories R*. Based on the model, we further devise
a highly-efficient adversarial trajectory detection algorithm for
Sybil attack identification.

In this section, we first introduce the architecture of the
proposed BRAE model. We then elaborate on the training
scheme of this model in detail. Subsequently, we present the
attack identification approach based on BRAE in Section [IV}

A. Model Architecture

Fig.[I] shows the architecture of the proposed deep learning-
based BRAE model. Two major components comprise the
neural network, namely, a trajectory encoder and a trajectory
reconstructor. The main objective of BRAE is to train the
network model so that the probability distribution of trajec-
tories within the investigating region can be characterized in
the latent space as a latent trajectory distribution. This latent
distribution is capable of reconstructing new trajectories based
on the input one, which can be utilized to identify whether an
arbitrary trajectory is authentic or adversarial.

1) Trajectory Encoder and Bayesian Neural Network: To
exploit the latent distribution, we first propose a trajectory
encoder network to embed an arbitrary trajectory R into a
latent feature vector. Intuitively, each location /; within R shall
demonstrate a strong temporal correlation — next locations
are closely related to the previous ones following an intrinsic
stochastic displacement dynamics. To reflect this physical rela-
tionship, we implement the encoder with a Bayesian recurrent
neural network that integrates Bayesian deep learning with
LSTM to handle variable-length trajectory data and capture
the stochastic sequential latent data characteristics.

The proposed trajectory encoder is a variant of the recurrent
neural network, which takes time-series data sequentially for
classification and regression. During the data processing, the
encoder holds a latent state c; that distills data points up to
time step ¢ in the time-series. Together with the new data
point input x; and generated output h;_; in the previous time
step, the three pieces of data are regulated by three gates that
describe how much respective information should be reflected
in the network output, namely, forget f;, input i;, and output
o; gates. Specifically, the forget gate determines how much
previous information in terms of h; will be retained; the input
gate controls the acceptance of new input x;; and the output
gate decides what shall be output at this time step. Following

Latent Trajectory
Distribution

2 Reconstruct the trajectory
in reverse order

Trajectory Reconstructor

this design principle of LSTM [23]], the data propagation rule
is formulated using perceptrons:

[f:,it, 0] :U(W - [x¢, heq] + b)v (1a)
Cy = ft ® Ct—1 + it ® tanh (Wc . [Xt7 htfl] + bc)7 (lb)
h; = o, ® tanh(c;), (1c)

where w, w,., b, and b, are trainable parameters, and ©
is the element-wise multiplication operation. We use ¢ to
denote the collection of the neural network parameters above
[24]. When embedding an arbitrary trajectory R, each location
l; is sequentially inputted into the network, i.e., x; = ;.
Subsequently, the input data is aggregated with the previous
output hy_; and the latent state c;_; to calculate the current
output hy.

With (I), the encoder is capable of predicting next step
trajectory locations. However, such a feature exploitation
scheme cannot fully interpret the stochastic uncertainties of
GPS trajectories, rendering the primary challenge of Sybil
attack identification unresolved. From the probability theory
viewpoint, the deterministic trajectory encoder is a proba-
bilistic model Pr(h|x, ¢»). With a fix-valued ¢, its training
follows the maximum likelihood estimation with the training
set D = {y?|x’}; where x* is the i-th sample in the set and
y' is the embedding of x?, i.e., h; above:

MLE i

= arg max Pr(D; ¢) = arg max log Pr(x*; ¢). (2a

¢ g max Pr(D; ¢) gqbzi:g(dﬁ()

When regularization is adopted for overfitting prevention, the

a priori is included the model and the parameters follows the
maximum a posteriori:

oM = arg mdzix log Pr(¢|D) (3a)

= arg mgx log Pr(D|¢) + log Pr(¢), (3b)
where the parameters are fixed values learnt by gradient
descent algorithm. If we consider the parameters follow the
posterior probability distributions given the training set, i.e.,
Pr(¢|D), the model is capable of exploiting data uncertainties
with Bayesian inference [25].

Following this design principle, a Bayesian neural network-
based trajectory encoder is constructed, whose output is de-
fined by ¢4(x) = h; with a prior distribution over the
parameter space Pr(¢). The likelihood function for Bayesian
regression is therefore defined by [T, (y*|ge(x")) where the
likelihood {(-) can be formulated by a Gaussian distribution.
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We subsequently have the learnt posterior distribution over
parameters as

r Pr(@) T, (v g (x'))
PHOP) = Thu ) I 1 (yilas () 06

With Pr(¢|D), g4(x) is capable of subsequent inference with
uncertainty quantification captured by the learnt parameter dis-
tributions. Given a newly observed trajectory R’, its embedded
latent distribution in the latent space is given by

Pr(§/[x/, D) = / 1(5'4s(x)) Pr(@|D)db,  (5)

where x’ = R’ and y’ is the generated embedding of R’. By
(1, @), and (@), a stacked L-layer Bayesian LSTM encoder
can be constructed [24]. Nonetheless, there are still two major
challenges in training and using this model, i.e., how to
describe the prior distribution in the parameters space and
how to perform the Bayesian inference via Pr(¢|D) and
Pr(y'|x’, D). We will address these challenges in Section
LBl

2) Trajectory Reconstructor: The fundamental design prin-
ciple of BRAE is to learn the authentic trajectory distribution
in a latent space, so that adversarial ones are embedded as
“out-of-distribution” latent (random) vectors. However, deriv-
ing the latent distribution from historical data is non-trivial
since such latent space is typically non-interpretable, rendering
it intractable to construct the training objective manually for
supervised learning. Therefore, we resort to self-supervised
learning on the historical trajectory data for learning their
latent representation.

In particular, we employ the autoencoder (encoder-decoder)
framework to embed trajectories in a latent space in this
work. The key inductive bias in this self-supervised learning
model is that a stochastic operation must be applied at each
time step of a time-series (trajectory) to develop the next
step, which resembles the intuition of entity movement on
a road: given a partial past trajectory, the next location will
be within a defined random region in the area. Combining
with the previous trajectory encoder, a trajectory reconstructor
that decodes embedded latent trajectory vectors back to their
respective original trajectory locations is devised to construct
the encoder-decoder architecture. We leverage the same data
processing technique in the encoder, i.e., Bayesian LSTM
model, to reconstruct the trajectory. Specifically, L layers of
Bayesian LSTM are stacked with the k-th layer’s output hﬁk)
be the input of the (k + 1)-th one, namely, xgkﬂ)
superscripts denote the layer indices.

A major difference between the encoder and the recon-
structor lies in their outputs. While the encoder develops the
embedded latent vector of length N°"® by adopting the same
number of neurons in its last neural network layer, the recon-
structor only produces a sequence of locations fn, lAn,l, cee fl
corresponding to the original trajectory in a reversed order,
where the hat above symbols indicates a prediction. Given
an arbitrary length-n trajectory denoted by {l1,ls, - ,l,},
the encoder exploits its latent information and develops the
final cell state vector C%L), which corresponds to the embedded
trajectory vector. This vector is then passed to the trajectory

“4)

, Where the

\
Trajectory Encoder \ Trajectory Reconstructor

T EEBEE AL L EE

1. Input GPS locations sequentially

2. Reconstruct the trajectory in reverse

Fig. 2. An example of the trajectory reconstruction process.

reconstructor in which it serves as the initial cell state, i.e.,
col). Using a zero-vector starting token (0) as the first input
X1, the reconstructor recovers the trajectory from the input cell
state starting from the n-th trajectory point according to (IJ),
(@), and (3). Then in the next time step of the neural network,
the recovered [, is taken as the input of the next timestep to
reconstruct [, ;. This process repeats until the last location Iy
is reconstructed. When training this model, the reconstruction
loss £(R, R) between the input authentic trajectory R and the
output reconstructed one R can be employed as the parameter
optimization objective. Fig. [2] demonstrates an example of
this trajectory reconstruction process. In this figure, the blue
dots on the left are the input trajectory points, and the green
dots on the right are the reconstructed trajectory points. The
reconstruction starts from the ending location and iteratively
infers the previous one until the trajectory is reproduced. The
dashed box indicates copying from the previous step output
of the reconstructor.

With this configuration, a question arises: why should
thismmodel learn a good embedded latent trajectory vector
C%L )7 This is due to the representation learning capability
of autoencoder neural networks. The state of the trajectory
encoder after the last input is the representation of the whole
input trajectory, with which the reconstructor is being asked to
reconstruct the input sequence [26]. To achieve this objective,
the representation must retain information on the critical
characteristics of the trajectory during parameter training.
Furthermore, two facts on this architecture prevent the model
from collapsing to an identity mapping that effectively copies
the input of encoder to the output of the reconstructor. First,
the fixed and limited number of neurons in the hidden layers
of this neural network render it highly unlikely to learn trivial
mappings from arbitrary length input trajectories. Second, the
same Bayesian LSTM recurrent operations are employed in
the reconstructor recursively so that the same displacement
dynamics must be employed at any stage of representation
decoding, which further prevents the model from becoming
an identity mapping.

B. Variational Inference

In Section there remains two issues that hinder
the model construction and training based on (1)), (@), and
(3): prior distribution determination and intractable Bayesian
inference. In a Bayesian neural network, the prior distribution
of a network parameter represents the prior belief about the
true distribution of the parameter. However, since the physical
meaning of neural network parameters mostly remains unclear,
it is difficult to determine their prior distribution with empirical
domain knowledge. Despite this, prior studies on Bayesian
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methods [27], [28]] indicate that adopting standard parametric
distributions for these parameters is among the most effective
solutions in such cases. We utilize this hypothesis and set the
prior distributions of all network parameters to be zero-mean
Gaussian distributions, which also bring about the merit of
regularization [27]].

With the prior parameter distributions set, the remaining
challenge of the proposed neural network is on the calculation
of Pr(¢|D), which is critical in determining the optimal
parameters. As this true posterior is typically intractable es-
pecially for complex learning models like the proposed one,
we employ the variational inference technique to approximate
it through a variational distribution [29], [30]. In particular,
we construct a new Bayesian neural network based trajectory
reconstructor parameterized by w— whose output is denoted
by ¢uw(¢)—to approximate the intractable true posterior
Bayesian inference Pr(¢|D). As all neural network parameters
in the reconstructor are probability distributions, q,,(¢) is the
approximated posterior distribution. The approximation can be
achieved by minimizing the Kullback-Leibler (KL) divergence
between the two distributions:

KL (¢ ()| Pr(¢|D))
4w (9)

- / (¢)logP ( ¢| D)d¢ (62)
~ [ aut@rtop 2215 () 105 (1(y s (<))
+log ([ Pr(e) Hl(yl‘m(x ))ds). (6b)

where (6b) is derived by substituting into (6d). In (6b),
the first term is the KL divergence between q,,(¢) and Pr(¢)
that describes the “closeness” of these two distributions. The
second term is the expected log-likelihood on ¢ (¢), by
which the variational distribution is encouraged to resemble
the correlation within D via g4 (x). The last term can be safely
omitted when minimizing KL (¢u,(¢)|| Pr(¢|D)) as it is not
dependent on w.

When minimizing the KL divergence, two factors render it
so computationally expensive that alternative solutions need
to be developed. Initially, the training dataset D typically
comprises a massive volume of samples, rendering it time-
consuming to evaluate the second term of (6b). Besides, the
highly complex g¢q(x) requires high-dimensional integration
over the nondeterministic non-differentiable ¢. To overcome
the computation burden, data subsampling [31] and repa-
rameterization [22]] strategies are adopted [27]. In the first
step, a random subset S of D is constructed to approximate

KL (gu(¢)|| Pr(¢|D)) based on (6b):

KL (gu(4)]| Pr(¢]D)) o Es | KL (0., ()] Pr(9)))

E;'Z/qw @) log (I(y'lap(x")))d } (7)

€S

Subsequently, ¢ is reparameterized by a deterministic dif-
ferentiable transformation ¢ = g(¢,€) with ¢g(e) being a
nonparametric distribution [27]. Given an arbitrary Gaussian

variational distribution ¢, = N (pt, oa"), it can be considered
as a transformation of € ~ N(0,I) by g(¢,€) = pu + oe.
Therefore, the integral in the second term of can be
approximated by

/ 4o () 10g (1(y' g (")) ) dgb
~ / 2(©)1og (1(y gy(.e) (x)) ) de
=E. [log (l(yi‘QQ(d),e)(Xi)))} :

The fitness objective of the KL divergence minimization
can be accordingly constructed by substituting (8b) into (7),
which can be optimized by stochastic optimizers. The obtained
optimal w* = {u*,0*} is also an optimum to the original
KL (¢ (#)|| Pr(|D)) [21], [32], and g (¢) is an approxi-
mation to the true posterior Pr(¢|D). Consequently, (3) can
be accordingly rewritten as

(8a)

(8b)

IS|

I
‘S|Z (¥'lgg, (x

which can be incorporated in the loss function of the proposed
autoencoder as follows, whose output aims at reconstructing

the input, i.e., y* = x":
= Al — o D log (1(x
| |z€S

Pr(y 7 ~ Qw*(d))a )

L(R,R)

x'))), (10)

x'|gg, (x
where the first term is a network parameter regularization term
conditioned by weight decay .

With (I0), the neural network parameter training can be
outlined by Bayes by Backprop [33] as in Algorithm [I] In

Algorithm 1: Parameter Training of BRAE

Data: R = {x'},, learning rate .
Result: ¢*

1 Randomly initialize ¢.

2 while ¢ not converged do

3 Sample N random variables €; ~ g(€) = N (0, I).
4 Sample S as a random subset of {1,2,--- , N}.
5 Calculate derivative of ¢ as
Aqb =75 Yies 55108 (X [qg(,e) (x7))) +
a1l
6 ¢ (— o+ ’I7A¢.
7 end

8 Save current ¢ as ¢~.

practice, we employ Adam [34] to slightly modify lines 5—
6 of Algorithm |l| based on adaptive estimates of lower-order
moments for training acceleration.

IV. ATTACK IDENTIFICATION BY TRAJECTORY INFERENCE
AND CLUSTERING

With the previously proposed BRAE model, trajectories
can be embedded in a latent trajectory space as multivariate
random variables. Because the model is constructed according
to Bayesian and recurrent neural network theories, it can
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intrinsically address the two challenges proposed in Section
I namely, capturing trajectory uncertainties and handling
heterogeneous trajectory lengths. In this section, we propose a
novel trajectory credibility scoring algorithm based on BRAE
inference for Sybil attack trajectory identification. Addition-
ally, we further devise a trajectory clustering mechanism to
reduce the training complexity of BRAE, which will also be
elaborated later in this section.

A. Sybil Attack Identification

Contributed by the autoencoder architecture of BRAE as
shown in Fig. the model is capable of reconstructing
a trajectory based on the latent information in the input
trajectory and the historical authentic ones in the form of
trained neural network parameters. Interpreting this capability
with the attack identification context, the model can generate
new trajectories which 1) are considered authentic according
to historical knowledge, and 2) are as approximate to the given
trajectory as possible. Consequently, if the generated ones
deviate from the input significantly, a Sybil attack is likely
to be launched. The proposed trajectory credibility scoring
algorithm for Sybil attack identification is formulated based
on this insight.

In particular, we consider an incoming trajectory R’ of lo-
cations x’' = {ly,l2, - ,l,} to be identified by the algorithm.
With the learnt optimal BRAE parameters ¢*, K synthesized
trajectories that closely resembles R’ can be generated by

R’ = {qg(¢,e)(x)€i ~ N(0,1),1 <i < K} (1)
For each of the n locations in R', e.g., [;, the corresponding
ones in all reconstructed trajectories R € R are aggregated
to formulate a respective location family O; with the centroid
location denoted by c;. Subsequently, the distance from c;
to each location fj,i € Oj can be calculated and denoted
by d(c;,1;;) where d(-,-) computes the Euclidean space
distance of two locations. At this point, we propose two
schemes to compute the credibility of R’ according to different
presumptions as follows.

1) Credibility by Gaussian: In this scheme, we hypothesize
that the reconstructed locations in O; follow a Gaussian
distribution, which is a strong yet effective assumption as will
be shown by empirical results in Section [V-D| Accordingly,
the credibility of R’ is given by

S(R) = H (1- (q,(d(cjylj)

0/7\/?) “hgenu, a2

; 2
where ®(z) = \/%?fjoo e~t*/2dt is the cumulative of the
standard Gaussian distribution, and o is the standard deviation
of {d(c;j, l}ml}, € 0,}. In (12), the term inside the product
denotes the probability of synthesized locations more distant
than /; from the centroid c;. The larger this term is, the more
credible /; is as the j-th location in R'. Fig. 3a| gives a con-
ceptualized illustration of this term. Consequently, multiplying
this credibility score for each location in R’ produces the
credibility of R'.

Centroid
— < Location in the input trajectory 1

— + Locations generated by BRAE d(cja l j)\ . /I
d(cjlj) 1 '\\' ‘. /II:-
(‘I’(aj/ﬁ) 2) %2 S8
1 ° . A
! . . .
1 .
| L TIOTT I T |
0
Distance to centroid . :

(a) Credibility by Gaussian (b) Credibility by sampling

Fig. 3. A conceptualized illustration to the two credibility scoring schemes.

2) Credibility by sampling: In this scheme, we employ the
frequentist inference to derive the probability of a location
being close enough to the centroid or not. Particularly, the
credibility of R’ is given by

F(R) =[] Hijald(ej, 1ji) > d(e;, 1), 1 < i < K}|/K.
l (13)

For cP(R'), the term inside the product represents the percent-
age of respective generated locations more distant than /; from
c;. Similar to (T2), larger c?(R’) values indicate more credible
trajectories.

Either credibility has its own merits and drawbacks.
While ¢P(R’) relaxes the assumption on posterior distribution
Pr(y'|x’, D), generally it requires a large K to achieve a
good approximation by fjl samples. In the meantime, the
calculation of cS(R’) is stable even with small K values,
which can significantly reduce the computation effort during
the online attack identification process. However, the assump-
tion of posterior being a Gaussian distribution is not a priori
grounded on theoretical analyses. Therefore, a general rule
of thumb of selecting the credibility scoring scheme is based
on the available computation resource. Credibility cP(R') is
preferred if K allowance is large, otherwise cC(R’) yields
better results. The empirical comparison of the two schemes
will be carried out in Section Employing either of
the scoring schemes, we can calculate the credibility c(R’)
of an arbitrary new trajectory. To have a deterministic and
binary identification of Sybil attack trajectories, a credibility
threshold A can be utilized, i.e., R’ is identified as a trajectory
adversarially generated by a Sybil attack if ¢(R') < A.

B. Fast Training with Trajectory Clustering

In Section [[II-A] we propose the architecture of BRAE,
which is powered by a recurrent autoencoder neural network.
With the possible massive volume of historical authentic
trajectories, obtaining the optimal network parameters can be
highly computationally expensive, especially with the multi-
sample backpropagation as shown in Algorithm [I] To acceler-
ate the training process of BRAE, we propose a trajectory
clustering scheme for fast BRAE parameter training. The
design principle is simple yet effective: within an investigated
area, the trajectories can be classified into multiple categories
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(a) GPS locations in Porto dataset

Fig. 4. Real-world datasets investigated in case studies.

considering their routes. In the previous training algorithm,
one BRAE model is required to learn the characteristics of all
these categories with the same set of neural network parame-
ters, which requires a significant model capacity. Considering
this, we can adopt multiple parallel and independent BRAE
models, each of which handles one or a few categories to
reduce the model capacity requirement. This, in turn, leads to
faster convergence of parameter optimization.

Following the analysis, the proposed training with the
trajectory clustering scheme is as concise as the following two
steps. Given a trajectory clustering algorithm, e.g., k-medoids
clustering on Hausdorf distance between trajectory pairs for
its simplicity, the authentic trajectory set R is split into M
clusters denoted by R™,1 < m < M. Subsequently, M
BRAE models with the same architecture are constructed and
initialized, each of which employs a cluster R™ to construct
its training dataset for parameter tuning using Algorithm [I]
Because each set consists of much less number of trajectories
whose route variance is also reduced during the clustering, the
whole training process is expected to be completed with less
time. If multiple computing devices are employed, the training
can be accelerated with proper parallelization.

With this trajectory clustering scheme, the Sybil attack
identification needs to be accordingly modified. Adopting the
M trained BRAE models g,(¢: ) parameterized by ¢, for
the m-th one, M groups of synthesized trajectories 7%2,1 can
be calculated referring to (TI). Using credibility by either
Gaussian or sampling, each group develops a score ¢, (R').
Finally, R’ is considered adversarial if mﬁx{cm(R’ )} < A.

V. CASE STUDIES

In this section, we carry out a series of comprehensive
case studies on three real-world datasets to evaluate the
efficacy of the proposed Sybil attack identification model. In
particular, we first investigate the size of the region that BRAE
can process with one standalone model through a scalability
test. Then the adversarial trajectory identification accuracy of
BRAE is evaluated and compared with existing related models.

(b) GPS locations in Beijing dataset

(c) GPS locations in Cologne dataset

Subsequently, a sensitivity test is conducted to evaluate the
impact of hyperparameter selection on the proposed model.
Finally, the efficiency of the proposed fast training scheme
with trajectory clustering is demonstrated.

A. Experimental Configurations

In this work, we employ three real-world vehicular trajec-
tory datasets, namely, Port(ﬂ Beijingﬂ and Cologneﬂ data.
Specifically, the Porto dataset is generated from 442 taxis
traversing the city of Porto from Jan. 07, 2013 to Jun. 30,
2014. The sampling interval of GPS records is 15s. We filter
out short trajectories of less than 5 locations, which accords
with the data aggregation pattern of crowdsourced navigation
where only persistent user reports are considered. The filtered
Porto dataset has 1628 269 trajectories. The Beijing dataset is
generated from the T-Drive data [35]] of 10 357 taxis from Feb.
2, 2008 to Feb. 8, 2008 within Beijing. The average sampling
interval is approximately 177s, and GPS records with more
than 10 min intervals are regarded as trajectory breakpoints
[16]. De-duplication is performed over the raw data to remove
redundant GPS locations with the same timestamp and taxi
identifier, and less-than-five-record trajectories are removed.
As a result, 57203 trajectories are developed. We note that
the 177s sampling interval of GPS records in this dataset
are not as practical for real-time crowdsourced navigation.
Nonetheless, we still employ this dataset in the hope of
demonstrating the robustness of BRAE on handling trajectories
with a wide range of sampling intervals. Finally, the Cologne
dataset is based on the data of the TAPASCologne project,
which is an initiative of the Institute of Transportation Systems
at the German Aerospace Center aiming at reproducing the
car traffic of the city of Cologne [36], [37]. The original
sampling interval is 1s and we downsample all trajectories to
5 s intervals. The main incentive for the downsampling scheme

Zhttps://www.kaggle.com/c/pkdd- 15-predict-taxi- service-trajectory-i/data

3https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-
data-sample/

“http://kolntrace.project.citi-lab.fr/
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is to notably reduce the computational burden of training
BRAE with high density data. By shrinking the dataset to
one fifth of its original size, a better and faster convergence
of neural network training can be expected. Additionally, this
data modification is also valid in practice, as it is trivial for
crowdsourced navigation applications to remove redundant
real-time GPS records within a 5s window. After removing
short ones with less than five records, the dataset has 662 053
trajectories. Fig. 4| depicts the GPS locations of the three real-
world datasets.

As there is no labeled dataset available for Sybil attack
detection, we follow the previous work on Sybil attack [8]],
spatial outlier detection [38]], and anomalous trajectory detec-
tion [16] to generate adversarial trajectories as Sybil attacks
for the assessment. In particular, four trajectory perturbation
and synthesis schemes are employed, namely, detour (DT),
route-switching (RS), down-sampling (DS), and slowdowns
(SD). The detour scheme moves a random part of a trajectory
along a direction roughly perpendicular to the head direction.
The route-switching scheme “grafts” two randomly selected
geographically adjacent trajectories in the dataset [16]]. Both
of these two schemes aim at compromising the crowdsourced
navigation by migrating the traffic from one road to another,
and we strictly follow [8]] to implement these two schemes.
Additionally, we have the down-sampling scheme which uni-
formly removes approximately 67% of all GPS records from
the trajectory to emulate a faster traffic speed than the real
one. Finally, the simulated slowdown algorithm proposed in
[8] is employed as the fourth adversarial trajectory genera-
tion scheme where we follow the proposed attack generation
algorithm in the respective literature to produce adversarial
trajectories. The four attack schemes were tested on a real-
world crowdsourced navigation system and all schemes can
compromise the reported transient traffic state. The detailed
attack results are not included though due to legal concerns.
Following the previous work [14], [16], [38], we inject 5%
synthesized adversarial trajectories in each dataset, in which
all trajectories are grouped into a training and a testing set by
the ratio of 3 : 1 for cross-validation consideration. We note
that if the training dataset is accumulated or has small changes
over time, incremental learning techniques can be employed
for online machine learning [39].

According to the design in Section an arbitrary trajec-
tory is assessed by a credibility score between zero (exclusive)
and one (inclusive). In both the simulated environment and
real-world scenarios, authentic and adversarial trajectories are
highly imbalanced in terms of occurrence and we are more
concerned about the detection of adversarial ones. Therefore,
the precision-recall area under curve (PR-AUC) is adopted
as the main performance metric which is highly capable
of evaluating skewed/biased datasets. Since this performance
metric is directly related to both the precision and recall of
the identification, the ratio of positive samples in the dataset
does not have significant impact on the PR-AUC value. Unless
otherwise stated, hyperparameters L = 3 in which each layer
has 128 neurons except for N®¢ = 32. Additionally, data
subsample size |S| and synthesized trajectory size K are both
set to be 32. The credibility of trajectories is evaluated by (12).

3 x3km

—— 5x5km

—&— All Porto

100 100

80 80

60 60

Precision (%)
Precision (%)

40

20

0 25 50 75 100 0 25 50 75 100
Recall (%) Recall (%)

(a) Downtown trajectories. (b) Residential trajectories.

Fig. 5. Precision-recall curve of the Porto dataset.

Z-score standardization is employed to normalize the datasets.
All case studies are conducted on computing servers with two
Intel Xeon E5 CPU and 128 GB RAM. The simulation is
developed in Python and BRAE is modeled with PyTorch.
Eight nVidia GTX 2080 Ti GPUs are employed on each server
for algebraic and neural network computing acceleration.

B. Identification Accuracy

By inspecting Fig. [} it is clear that the size of the covered
region by the real-world datasets is massive and using one
BRAE model to exploit all vehicular displacement dynamics
can be challenging given the fixed model capacity. Therefore,
it is more computationally efficient to divide the whole urban
city region into small grids for feature extraction than feed all
trajectories into one model and hope for finding the parameter
space optimum within finite time. In this subsection, we
investigate the scalability of BRAE and propose guidelines
for its training.

To illustrate BRAE scalability, we first construct sub-
datasets of different sizes based on the three real-world
datasets. Particularly, two parameters are adopted to control the
construction, namely, the size of the sub-region (2kmx2km,
3kmx3km, or 5kmx5km) and whether it is in the down-
town area or not. Then for each of the six possible parameter
configurations, four non-overlapping different sub-regions are
created, and all trajectories in the original dataset that intersect
with the sub-regions are completely included in the respective
sub-datasets. As a result, 3 (cities)x 3 (sizes)x2 (downtown)x
4 = 72 BRAE models are trained on the constructed sub-
datasets, whose identification accuracy and training time are
summarized in Table I Three additional BRAE models are
also included in the table for reference (labeled by “All”)
which are directly trained with the original datasets.

From the comparative results, several conclusions can be
developed. First, the PR-AUC performance slightly degrades
with the increase in the size of sub-regions from 2kmx2km
to 5 km x5 km. This observation is contributed by two factors.
On the one hand, the model capacity of BRAE is suffi-
cient to exploit the vehicular displacement dynamics within
5kmx5km regions with the neural network parameters,
rendering comparable identification accuracy. On the other
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TABLE I
PERFORMANCE COMPARISON OF BRAE TRAINED WITH SUB-DATASETS OF REAL-WORLD VEHICULAR TRAJECTORIES
Porto Beijin Cologne
PR-AUC yme £
2x2km  3x3km 5x5km All 2x2km 3x3km 5x5km All 2x2km  3x3km 5x5km All

Overall 0.857 0.847 0.817 0.306 0.813 0.759 0.754 0.267 0.863 0.845 0.834 0.395
§ DT 0.863 0.844 0.805 0.332 0.767 0.739 0.739 0.300 0.853 0.837 0.836 0.435
% RS 0.858 0.800 0.824 0.281 0.753 0.751 0.744 0.259 0.852 0.832 0.820 0.359
z DS 0.763 0.790 0.688 0.266 0.787 0.649 0.615 0.246 0.789 0.755 0.751 0.329
Qo SD 0.987 0.983 0.985 0.448 0.988 0.960 0.956 0.315 0.988 0.981 0.977 0.606

Training 8.5h 9.6 h 11.5h >1d 9.3h 10.3h 12.4h >1d 9.1h 10.3h 12.7h >1d

Overall 0.886 0.877 0.838 - 0.821 0.763 0.758 - 0.885 0.853 0.839 -
_§ DT 0.885 0.846 0.832 - 0.782 0.721 0.700 - 0.884 0.818 0.844 -
S RS 0.866 0.882 0.835 - 0.852 0.728 0.754 - 0.876 0.850 0.823 -
2 DS 0.815 0.794 0.745 - 0.708 0.703 0.683 - 0.824 0.770 0.752 -
~ SD 0.993 0.984 0.977 - 0.977 0.956 0.953 - 0.985 0.984 0.979 -

Training 4.2h 7.1h 10.0h - 4.9h 7.9h 10.9h - 4.5h 7.7h 10.8h -

hand, the notable increase in the number of trajectories to
be processed with the region size imposes difficulty on the
parameter optimizer to locate the optimal solutions in the
parameter space. As a side effect, longer training time is
required for larger regions. Second, the performance deviation
of BRAE for downtown and residential regions is insignificant
(£0.03 PR-AUC for Porto, £0.008 for Beijing, and +0.022
for Cologne). This observation demonstrates the generality
of BRAE on handling regions with different densities and
displacement patterns of vehicular trajectories. Third, the
comparison suggests that inputting all trajectories of a city
into BRAE yields bad identification performance. This is
due to the massively increased number of trajectories, which
require BRAE to, therefore, capture the significantly increased
patterns of trajectory dynamics. As a result, the training
process takes longer than one day and the pre-mature models
after training for 24 h generate inferior PR-AUC performance.

Considering both the identification accuracy and training
time factors, a guideline for using the BRAE model can be
derived. While dividing an arbitrary investigated region into
small grids yields the best accuracy performance and shortest
single model training time, seven to nine independently trained
BRAESs handling 2kmx2km grids are required to cover one
5kmxb5km region. If models are to be trained sequentially,
the total training time of small grids far exceeds that of a large
one despite the slight accuracy improvement. In the meantime,
too large regions, e.g., a whole city, can overwhelm the model
capacity of BRAE, rendering inferior performance. Therefore,
properly selecting the size of regions covered by BRAE is
crucial. Either 3kmx3km or 5kmx5km is preferred, and
we adopt 5 km x5 km in the following case studies.

One may note that collusion of adversaries is a significant is-
sue of many crowdsourcing systems. Such a scenario is indeed
captured by the case study where the adversarial trajectory
generation process emulates that only one Sybil attacker is
generating a massive amount of adversarial trajectories. This
is in principle equivalent to the case where multiple adversaries
cooperate to launch the attack (collusion) with lossless infor-
mation exchange. Since the proposed BRAE handles real-time
trajectories without considering possible inter-trajectory spatial
or temporal correlations, the performance is not compromised

under collusion scenarios.

C. Comparison with Baseline Algorithms

To comprehensively evaluate the performance of the pro-
posed model, we conduct a comparative study to compare
BRAE with state-of-the-art anomaly detection algorithms.
As introduced in Section there is no existing solution
developed for Sybil attack trajectory identification to the best
of our knowledge. Therefore, four existing trajectory outlier
and anomalous trajectory detection algorithms are compared,
which aim at addressing similar trajectory data mining prob-
lems. In particular, the following baseline algorithms are
employed:

« TRAQD [40] detects outlier trajectory from others by first
partitioning a trajectory into segments and perform the
detection based on them. The anomaly is evaluated on
the total length of outlying segments.

o iBOAT [15] maintains an adaptive working window on
GPS trajectories and compares the covered locations
against historical trajectories to develop a “support” fit-
ness value. This value is thresholded to detect anomalies.

e DBTOD [41] considers the driving statistics of trajec-
tories, e.g., driving speed and bearing, and constructs a
probabilistic model for anomalous trajectory detection.

o VSAE [16] adopts a Gaussian mixture variational autoen-
coder to capture the sequential latent trajectory features
so that normal trajectory routes can be developed. The
subsequent anomaly detection is based on the routes. The
GM-VSAE variant is employed in the comparison.

For all baseline approaches, their respective publicly available
source code is employed in this case study with non-critical
changes to adapt to the adversarial trajectory detection prob-
lem. In particular, all baselines focus on investigating trajec-
tories with one or a few source-destination pairs, where the
source and destination are artificial grids in the geographical
space. Additionally, VSAE encodes all trajectory locations into
grids. To accommodate this restriction, the investigated geo-
graphical space of all datasets are partitioned into 50 m x50 m
grids. Please note that this change does not apply to the
proposed BRAE, and it does grant unfair advantages to either
BRAE or the baselines. All other case study configurations
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TABLE II
PERFORMANCE COMPARISON OF BRAE AND BASELINE ALGORITHMS

PRAAUC Porto 5 kmx5km Beijing 5 kmx5km Cologne 5km x5 km
BRAE TRAOD iBOAT DBTOD VSAE BRAE TRAOD iBOAT DBTOD VSAE BRAE TRAOD iBOAT DBTOD VSAE
Overall ~ 0.817 0.260 0.240 0.357 0.448 0.754 0.238 0.231 0.351 0.427 0.834 0.269 0.260 0.373 0.466
DT 0.805 0.234 0.240 0.351 0.420 0.739 0.222 0.210 0.328 0.438 0.836 0.237 0.262 0.381 0.450
§ RS 0.824 0.254 0.231 0.385 0.418 0.744 0.228 0.236 0.314 0.436 0.820 0.276 0.229 0.436 0.460
£ Ds 0.688 0.258 0.214 0.284 0.419 0.615 0.253 0.224 0.332 0.343 0.751 0.264 0.259 0.289 0.398
% SD 0.985 0.346 0.335 0.549 0.674 0.956 0.277 0.304 0.540 0.626 0.977 0.370 0.326 0.477 0.715
8 TPR 0.902 0.683 0.669 0.753 0.781 0.873 0.649 0.696 0.749 0.772 0.897 0.687 0.675 0.759 0.791
TNR 0.911 0.673 0.655 0.747 0.777 0.890 0.674 0.671 0.735 0.779 0.911 0.674 0.675 0.741 0.783
Overall  0.838 0.242 0.211 0.332 0422 0.758 0.229 0.226 0.324 0.413 0.839 0.261 0.251 0.362 0.445
_ DT 0.832 0.238 0.207 0.295 0.429 0.700 0.181 0.202 0.290 0.397 0.844 0.237 0.269 0.326 0.405
2 RS 0.835 0.205 0.177 0.361 0.401 0.754 0.236 0.226 0.323 0.390 0.823 0.218 0.243 0.365 0.406
g Ds 0.745 0.263 0.197 0.260 0.351 0.683 0.243 0.209 0.289 0.394 0.752 0.289 0.213 0.324 0.405
'z SD 0977 0.312 0.309 0.566 0.656 0.953 0.294 0.323 0.503 0.609 0.979 0.350 0.346 0.541 0.700
. TPR 0.908 0.680 0.654 0.748 0.790 0.880 0.679 0.670 0.700 0.785 0.925 0.669 0.676 0.753 0.774
TNR 0.915 0.671 0.654 0.740 0.772 0.886 0.669 0.668 0.731 0.776 0.909 0.676 0.676 0.748 0.782
the macroscopic route variance among trajectories for outlier
—e— BRAE  —4— iBOAT detection. Additionally, the introduction of time-series analysis
LRA0D —&— DBTOD  —*— VSAE in BRAE and VSAE helps the respective models to capture
100 100 time-dependent and latent displacement dynamics. Comparing
% % with VSAE, the proposed BRAE relaxes the geographical
< < grid assumption that imposes a dilemma during the algorithm
) 60 design process: while fine-grained small grids yield better
3 3 data granularity which means better feature exploitation, the
s 40 A corresponding training time and model capacity requirements
20 20 increase exponentially. Therefore, it is non-trivial for such
grid-based algorithms to find the optimal grid size for detecting
0 25 50 75 100 0 25 50 75 100 adversarial trajectories in meso- or even microscopic traffic
Recall (%) Recall (%) flow. The design of BRAE does not have this concern and
(a) Downtown trajectories. (b) Residential trajectories. are accordingly better performing. For readers’ reference,
Fig. 6. Precision-recall curve of BRAE and baselines on the Porto the precision-recall curves of all testing trajectories in Porto

5km x5 km sub-dataset.

are kept identical across the board. Table [T presents the PR-
AUC performance, true positive rate (TPR), and true negative
rate (TNR) of Sybil attack identification using BRAE and
baseline algorithms on Porto, Beijing, and Cologne datasets,
respectively.

For detecting adversarial trajectories launched by Sybil at-
tacks, BRAE significantly outperforms all baseline algorithms
on all datasets. In particular, 82.4% (downtown) to 98.6%
(residential) improvements over the best-performing baseline,
i.e., VSAE, are developed on the Porto dataset considering
5 km x5 km regions. This advantage is maintained in the other
two datasets, where the percentage improvements are 76.6%
to 83.5% in Beijing and 79.0% to 88.5% in Cologne, respec-
tively. This indicates that a tailor-made adversarial trajectory
detection model like BRAE is required for Sybil attack iden-
tification, and related outlier/anomalous trajectory algorithms
cannot fully exploit the trivial differences between authentic
and adversarial trajectories. The comparison also implies that
distance and density-based algorithms (TRAOD and iBOAT)
are generally not suitable for the investigated task. This is due
to their non-compatible design principle that mainly considers

5kmx5km regions are plotted in Fig. [

In Table [l the PR-AUC scores of the four adversarial
trajectory schemes are also presented to give insight into the
characteristics of Sybil attack identification. Specifically, we
can conclude that the down-sampled accelerating trajectories
are the most difficult scheme to be accurately detected and the
slowdown scheme proposed in [§]] that compromised Waze is
the simplest one. This accords with intuition. As the slowdown
scheme only regulates the instantaneous vehicular speed of ad-
versarial trajectories, the unnaturally straight traces make them
suspicious to all detectors. In the meantime, both the detour
and the route-switching scheme introduces sharp turns at the
points of perturbation. This is an easy characteristic that can be
seldomly observed in authentic trajectories and thus captured
by learning models. Finally, as removing locations from a
trajectory is in general equivalent to lower the data granularity
with instantaneous speed compromised, it is relatively hard to
distinguish them from sampling noise. A possible solution for
detecting such down-sampling trajectories is to include the
acceleration attribute in the identification process, which can
be a future extension to the feature-based BRAE or DBTOD.

Last but not least, we also summarize the TPR (recall)
and TNR (specificity) of BRAE and baselines in Table [[]
where the former reflects the Type II error performance
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TABLE III
BRAE VARIANTS AND PERFORMANCE ON PORTO 5 km x5 km DATASET

Downtown Residential

Model Neurons

PR-AUC  Training PR-AUC  Training
BRAE 128 x 2+ 32 0.817 8.5h 0.838 4.2h
A 128 x 14 32 0.742 5.3h 0.763 29h
B 128 x 3 4+ 32 0.823 19.5h 0.836 11.0h
C 256 x 1+ 32 0.791 6.2h 0.803 3.9h
D 256 x 2 + 32 0.825 15.0h 0.841 9.9h
E 128 x 2416 0.633 7.8h 0.636 4.0h
F 128 X 24 64 0.815 10.6 h 0.846 4.8h

and the latter corresponds to Type I error. The simulation
results clearly indicate that BRAE notably outperforms base-
line approaches in terms of accurately identifying adversarial
trajectories (TPR) while retaining authentic ones (TNR). In
general, the ratio of false positives can be reduced by half
based on the best-performing baseline, i.e., VSAE, in all three
datasets. Furthermore, an approximately 90% TPR indicates
that the proposed BRAE is capable of defending practical
Sybil attacks. As the key to these attacks is to create a large
number of pseudonymous identities to compromise crowd-
sourcing, 90% TPR means that the number of such forged
identities has to be increased to ten times its original value.
This imposes great difficulty in launching successful Sybil
attacks as contemporary crowdsourced navigation systems
usually consider the “reputation” of pseudonymous identities,
rendering the attacks significantly more costly [8|]. Despite
significantly outperforming existing models, we acknowledge
that the approximately 10% false positives potentially lead to
notable information loss at the control center of crowdsourced
navigation systems. The challenge is less severe when the
crowdsourced trajectories are abundant so that the remaining
90% authentic ones resemble unbiased samples from the
ground truth trajectory population. Meanwhile, small-scale
systems may observe degenerated performance over large
ones. In light of this, we call for further research on pushing
the TPR to near-perfect.

D. Hyper-parameter Sensitivity

In the design of BRAE, multiple hyper-parameters are intro-
duced to control the data flow and training of the model. They
play a crucial rule in determining the performance of Sybil
attack identification. To illustrate the sensitivity of BRAE
on them, we perform a hyperparameter sweep test in this
subsection. In particular, we first propose a series of BRAE
variants with different neural network hyper-parameters for an
architecture test. Then we examine the influence of different
credibility hyper-parameters, i.e., K value and credibility scor-
ing scheme. The Porto 5 km x5 km dataset is employed in this
test, and offline simulations show that the others demonstrate
similar results.

In particular, Table presents a summary of the BRAE
variants and their respective identification and training perfor-
mance on the Porto 5 kmx5km data, in which each value is
the average of the results from the four different sub-regions
as introduced in Section The labels under the “Neurons”
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Fig. 7. PR-AUC of credibility hyper-parameters.

column refer to the number of layers and neurons in the tra-
jectory encoder and reconstructor. For example, “128 x 24-32”
stands for two hidden layers with 128 neurons and a last layer
with N = 32 neurons in the encoder (i.e., L = 3), and the
decoder replaces the last one with a length-2 layer for location
reconstruction. From the summary, it can be concluded that
the Sybil attack identification performance of BRAE is in
general not sensitive to the neural network hyper-parameters
as long as model capacity is saturated. This can be derived by
comparing BRAE with variant models B, D, and F, where the
number of neural layers L, the number of neurons, and the
embedded latent vector length N°®* are increased based on
BRAE, respectively. While there is no notable improvement
on the PR-AUC metric, the corresponding training time is
extended due to the significantly larger parameter searching
space caused by the increasing number of learnable neural
network parameters. In the meantime, model C removes one
layer but doubles the number of per-layer neurons. This change
reduces the model capacity to the under-saturated region,
rendering slightly worse PR-AUC and shorter training time.
Model A drastically shrinks the model capacity and model E
constructs a latent trajectory space of limited expressibility.
Neither of the variants is preferred despite their respective
reduced training time.

Besides, Fig. [7| presents the performance sensitivity of cred-
ibility hyper-parameters. From the results, several conclusions
can be developed. First, when the K value is small, credibility
by Gaussian yields better PR-AUC than that of the credibility
by sampling scheme. This is because a large sampling size
is generally required to have a good sampling distribution
to approximate the population, whereas the credibility by
Gaussian assume the latter to be Gaussian. However, this
assumption may deviate from the ground truth, rendering in-
ferior performance when the sampling distribution is accurate
enough. Second, both schemes converge with sufficiently large
K, which accords with the intuition. When converged, the
performance difference of the two scheme originates from the
Gaussian distribution assumption error. Third, a general rule
of thumb is to use credibility by Gaussian with K < 40 and
credibility by sampling otherwise. The selection of K depends
on the computation burden of real-time attack identification.
For reference, the proposed BRAE takes 73.1ms on average
to develop the credibility of a trajectory at K = 32, and an
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TABLE IV
TRAJECTORY CLUSTERING TRAINING ON PORTO 5 km x5 km DATASET

M Downtown Residential
PR-AUC  Training (Par./Seq.) PR-AUC  Training (Par./Seq.)
1 0.817 8.5h/85h 0.838 42h/4.2h
2 0.811 3.9h/7.5h 0.825 2.2h/4.3h
4 0.809 2.2h/8.3h 0.833 1.3h/4.8h
8 0.813 1.5h/11.0h 0.829 09h/6.1h

extra 1.7 ms is required to increase K by one.

E. Efficiency of Trajectory Clustering

In Section we propose a trajectory clustering scheme
for fast BRAE training. Table presents the summary of a
case study on its efficiency in reducing the training time. In
this table, the values under the “Training (Par./Seq.)” column
present the respective parallel and sequential training time.
From the results, it can be concluded that the proposed fast
training scheme can effectively reduce the training time if
multiple models can be trained in parallel. Additionally, this
efficiency improvement does not undermine the Sybil attack
identification performance with notable PR-AUC degradation.
Nonetheless, this scheme is only recommended in case that
multiple training and inference devices are available. The total
sequential training time may unfavorably increase due to the
introduced computational overhead, e.g., k-medoids clustering.

VI. CONCLUSIONS

In this paper, we propose a novel self-supervised Bayesian
Recurrent Autoencoder for detecting adversarial trajectory in
Sybil attacks targeting crowdsourced navigation systems. The
proposed deep learning model is capable of exploiting the
time-series features of vehicular trajectories with significant
sampling and displacement uncertainties. By adopting an
encoder-reconstructor architecture, trajectories are embedded
in a latent trajectory distribution space as multivariate random
variables, which are later employed to reconstruct resembling
trajectories that are considered authentic by the model. Sub-
sequently, by comparing the input trajectory with them, a
credibility score can be calculated statistically. Lastly, a fast
training scheme is devised based on trajectory clustering for
accelerated training in parallel. To evaluate the efficacy of the
proposed model, a series of comprehensive case studies are
conducted on three real-world vehicular trajectory datasets.
Results demonstrate that the proposed model outperforms
state-of-the-art baselines with at least 76.6% PR-AUC metric
improvement. Furthermore, a hyper-parameter sensitivity test
is carried out to illustrate the impact of and develop guidelines
for hyper-parameter selection. Finally, simulation results indi-
cate that the proposed fast training scheme achieves sub-linear
speedup with a parallel model training system.

In the future, we want to explore extensions to other deep
generative or auto-regressive models for adversarial trajectory
identification tasks. We look forward to follow-up research
on developing further methods and datasets for the critical
problem of defending Sybil attacks. The proposed BRAE and

its credibility scoring scheme also demonstrate potential of
being applied to GPS sensor and inertial navigation spoofing
attacks [42], [43[] with proper enhancements. This is another
promising future research direction.
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