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Abstract—Data integrity of power system states is critical to
modern power grid operation and control. Due to communication
latency, state measurements are not immediately available at the
control center, rendering slow responses of time-sensitive applica-
tions. In this paper, a new graph-based deep learning approach is
proposed to recover and predict the states ahead of time utilizing
the power network topology and existing measurements. A graph-
convolutional recurrent adversarial network is devised to process
available information and extract graphical and temporal data
correlations. This approach overcomes drawbacks of the existing
synchrophasor recovery and prediction implementation to im-
prove the overall system performance. Additionally, the approach
offers an adaptive data processing method to handle power
grids of various sizes. Case studies demonstrate the outstanding
recovery and prediction accuracy of the proposed approach, and
investigations are conducted to illustrate its robustness against
bad communication conditions, measurement noise, and system
topology changes.

Index Terms—Wide-area measurement system, communication
latency, prediction system, deep learning, state estimation, inter-
net of things.

I. INTRODUCTION

W ITH the gradual adoption of wide-area monitoring
system (WAMS), power grids and energy systems are

embracing the Internet of Things (IoT) technologies [1], [2].
Thanks to the distributed sensors across the grids, system op-
erating states can be measured in a synchronous and frequent
manner [3]. These synchrophasors enable advanced power
system operations and control, including but not limited to
the massive adoption of renewable generations and demand-
side control, which were conventionally not possible with the
traditional supervisory control and data acquisition system [4].
Much research has been performed on utilizing the information
in a wide range of power system services, see [4]–[7] for some
examples.

For applications using high-frequency power system state
data, the quality-of-service of data transmissions is among the
critical factors in system operation and control [8]. According
to analyses by the North American Synchrophasor Initiative
(NASPI), data quality issues in power applications can be
characterized by data accuracy, availablity, and timeliness [9],
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[10]. While existing research relies heavily on the sampling
devices in WAMS to guarantee data accuracy, data avail-
ability and timeliness concerns are generally neglected. It
is commonly assumed that the communication infrastructure
is error-free and enjoys zero-latency when addressing power
system issues [11]. However, as analyzed in [8], [11], [12],
stochastic packet drops and data transmission latency can
significantly influence data integrity in power systems. The
problem is becoming increasingly serious due to the expansion
of power grids and introduction of new power electronics
in the past few years [13], [14]. In many communication
network implementations, data loss issues can be addressed
by packet re-transmission. However, this can further increase
the data transmission latency, rendering a slower system re-
sponse [12], [15]. There exists previous work investigating
solutions to handle missing PMU data, see [13], [16] for
examples. The proposed approaches mainly utilize the low-
rank property of synchrophasors or their Hankel matrix for
missing data recovery. However, such low-rank-based methods
are not guaranteed to handle scenarios with a large missing
data volume or incoherence as available data is not guaranteed
to satisfy the minimal obtained measurement requirement [13].
Additionally, scaling errors can be hardly detected since the
system model information is not included in the solutions [16].

Recently, a synchrophasor recovery and prediction frame-
work (SRPF) was proposed to address the data integrity
problem led by communication latency in WAMS [8]. The
framework employs recent deep neural network techniques to
recover missing system measurements in the past and predict
future ones in real-time. SRPF comprises two modular sub-
systems, each of which can accommodate various implemen-
tations to meet different requirements of power applications,
provided the input and output of the sub-systems are respected.
Preliminary case studies demonstrate satisfactory system per-
formance on a small-scale power system [8], [17].

However, there exists a research gap in addressing the data
integrity problem in power systems. The original design of
SRPF in [8] does not fully utilize the available information in
the system dynamics, especially the power network topology.
Similar to other learning-based research, e.g., [18], [19],
system states are considered as Euclidean data vectors during
processing without topological information. Nonetheless, this
design requires the learning system to implicitly extract the
hidden topology information from the input data, instead
of explicitly utilizing it as another input. There are several
shortcomings of this design. On the one hand, the recovery
accuracy is potentially undermined since excessive computa-
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tional effort is required to learn the topology information. On
the other hand, additional neural network layers are necessary
to identify system dynamics characteristics for large systems,
rendering the framework less scalable. These drawbacks will
be demonstrated by case studies in Section IV.

To bridge the research gap, in this work we propose a new
graph-convolutional recurrent adversarial network (GRAN),
which is employed to predict power system measurements.
Combining the design principles of existing neural network
structures in the literature, a new graph-convolutional recur-
rent layer is first constructed to process measurements as
graphs, and data features can be simultaneously extracted both
graphically and temporally. Furthermore, based on this neural
network layer, we propose GRAN, which incorporates the
recent generative adversarial model in its architecture. The
proposed network takes power grid topology information and
available measurements as inputs to predict future system
states. This is among the pioneering work of using graph-
based deep learning techniques in addressing power system
issues.

The main contributions of this work are listed as follows:
• We propose a new neural network structure called graph-

convolutional recurrent layer to simultaneously extract
graphical and temporal characteristics of data. It can be
adopted in addressing a wide range of problems with such
data structures.

• We formulate GRAN to greatly improve the predictor per-
formance in recovering and predicting synchrophasors. It
overcomes drawbacks of the existing implementation.

• We carry out a series of comprehensive case studies to
investigate the performance of the proposed system. The
results demonstrate its efficacy and robustness to latency,
data noise, and system changes.

The rest of this paper is organized as follows. We briefly
introduce the communication latency problem in WAMS
and SRPF in Section II. Section III elaborates the detailed
formulation and design of the proposed graph-based deep
learning approach, and discusses the training and prediction
methodologies. In Section IV, case studies are recorded with
analyses. Finally, this paper is concluded in Section V.

II. SYNCHROPHASOR RECOVERY AND PREDICTION

As analyzed in the previous section and the literature, e.g.,
[8], communication latency is not negligible in WAMS. With
the gradual deployment of phasor measurement units (PMUs)
that develops millisecond-level system state samples, tens or
hundreds of milliseconds latency significantly influences the
response speed of time-sensitive power system applications
[11]. Suppose PMUs p ∈ P in WAMS sample the state
at a same time. These measurements need to be transmitted
to a control center, resulting in stochastic latency dp. While
previous work assumes dp ≡ 0, the latency must be respected
in real-world implementation. As a result, at least maxp∈P dp
waiting time is imposed on any subsequent control and
protection applications. This problem becomes critical when
the communication infrastructure experiences random latency
spikes since the system needs to wait for the last measurement
[8].

To resolve communication latency issues in WAMS, the
authors proposed a synchrophasor recovery and prediction
problem in [8], which can be summarized as follows. We first
model the power network by an undirected graph G(V, E),
where V and E are the sets of buses and branches, respectively.
We use A = {aij} ∈ BB×B to represent the adjacency
matrix of the graph with diagonal entries set to ones. Matrix A
represents the key topology information of the power network.
If bus i, j ∈ V are connected by transmission lines or power
electronics, the corresponding aij = aji = 1. For bus i ∈ V ,
we denote the set of its connecting branches by Ei ⊂ E .
In addition, neighboring buses of bus i ∈ V are defined by
Ni = {k ∈ V|(i, k) ∈ Ei}. We use symbol τ to denote
investigated time instances in the time horizon T , which
represents the discrete time instances when PMUs sample
system variables.

In the power system G(V, E), PMUs are installed on buses
in the set VM ⊆ V . We use VN = {k ∈ Ni|i ∈ VM}
to denote the neighboring buses connected to VM. Similar
to [8], we employ the widely adopted PMU model [20],
[21] which measures the complex voltage phasor Vi,τ of its
installation bus i at τ , and all complex current phasors Iik,τ
of branch (i, k) ∈ Ei. Considering the lumped-circuit model
for transmission lines, voltage phasors of buses k ∈ Ni
can be calculated by employing transmission line parameters.
Therefore, voltage phasors of VM can be sampled directly,
while those of VN can be subsequently calculated.

Let Mτ = {Vi,τ , Iik,τ |i ∈ VM, (i, k) ∈ Ei} be the mea-
surements generated by PMUs on VM for a past time instance
τ . Due to communication latency, only partial measurements,
denoted by M−τ ⊆ Mτ ,∀τ ≤ 0, is received by the control
center at the current time. Subsequently, a partial system state
S−τ = h(M−τ ) = {Vi,τ |i ∈ VMP

τ,t ∪ VNP
τ,t } of the investigated

time instance can be developed, where h(·) reflects the power
grid topology and network parameter information, VMP

τ,t ⊆ VM

and VNP
τ,t = {k ∈ Ni|i ∈ VMP

τ,t } are the buses whose
measurements are received, and the neighbors of VMP

τ,t ⊆ VM,
respectively. The problem can be interpreted as recovering and
predicting complete system states Sτ = {Vi,τ |i ∈ V}, τ ∈ Z
using partially available measurements {M−τ }t∈T .

Aiming at solving this problem, the authors proposed a
delay-aware synchrophasor recovery and prediction framework
in [8]. SRPF considers time-series system states as a data
matrix, in which the entries correspond to measurements
not yet received by the control center are missing. In the
framework, two-subsystems, named predictor and estimator,
cooperate to recover these missing entries. Additionally, the
predictor can be further employed to make predictions on the
system states in the near future, which represent a possible
trend of power system dynamics. To achieve the objective, the
predictor first finds the most recent time instance τ∗ in the
past such that all states before it are complete. These states
are then used to make a prediction of the immediately next
one:

S+
τ∗+1 = Predictor(S−τ∗ , S

−
τ∗−1, · · · ). (1)

Then the estimator combines the prediction and the remaining
partial system states to calculate a better estimation of the
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same time instance:

Ŝτ∗+1 = Estimator(S+
τ∗+1, S

−
τ∗+1, S

−
τ∗+2, · · · ). (2)

This estimation Ŝτ∗+1 is regarded as the best approximation of
Sτ∗+1, and replaces it in following computations. The process
repeats until no partial system states are left for the estimator,
and subsequent predictions S+

t are considered as St.
In the previous work, a gated recurrent unit ensemble is con-

structed to implement the predictor [8]. While the case stud-
ies demonstrated satisfactory performance, its performance
on large power systems remains unknown. Furthermore, the
technique discarded the power network topology information,
which plays a critical role in determining power flow and
dynamics. In the next sections, we propose a new graph-based
deep neural network technique to overcome these drawbacks.

III. GRAPH-CONVOLUTIONAL RECURRENT ADVERSARIAL
NETWORK (GRAN)

As discussed above, the previous synchrophasor recovery
and predictor implementation suffers from the information
under-utilization problem. In this section, we propose a new
deep neural network architecture for the predictor based on
recent developments of deep learning techniques. We first elab-
orate on the computation of the proposed graph-convolutional
recurrent layer in the neural network, and discuss its advantage
over existing models. Then we construct the proposed GRAN,
and illustrate its training and prediction methodology. The
proposed predictor collaborates with the original estimator
in [8] to develop recovered and predicted power system
synchrophasors.

A. Graph-convolutional Recurrent Layer

In this work, we follow the design principle of graph
convolutional network (GCN) and long-short term memory
(LSTM) to construct a graph-convolutional recurrent layer
(GRL), which aims to extract both the temporal and graphical-
spatial characteristics from the input data. In particular, the
layer inherits the idea of convolutional filters in conventional
convolutional neural networks (CNN). Such filters perform
neighborhood information mixing on the input data, which
typically refer to images or signals in Euclidean space, in
order to propagate local information in the result [22]. By
tailoring the filters, spatial data correlations can be learnt from
the training data.

Nonetheless, conventional design of convolutional filters
mix information within their receptive fields, which are com-
monly rectangular. This design cannot be easily adopted in
handling data with graph structures due to the irregularity
of node connections [23]. Instead of sharing information
with geographical neighborhoods as for image pixels, graphs
concentrate more on the data correlation over graph edges,
which are the power transmission lines in our case. To over-
come this drawback, a representative description of the graph
topology, e.g., adjacency matrix, can be adopted to replace
the convolutional filter in the information propagation process.
This is the conceptual idea of GCN [23], which maps a B×M
input data matrix to a new B×F output feature matrix, where

B, M , F are the number of nodes in the graph, number of
input and output features for each node, respectively. The
alternative graph-based propagation is performed by a non-
linear function:

H(l+1) = f(H(l), A) = σ(D̂−
1
2AD̂−

1
2H(l)W (l) + b(l)), (3)

where the graph-convolutional layer is the l-th one in a neural
network. H(l) is the input data matrix of the l-th layer,
i.e., output of the (l − 1)-th layer. f(·, ·) is the propagation
rule, σ(·) is a non-linear activation function, e.g., tanh(·).
Finally, D̂ is the diagonal node degree matrix of A, and
W ∈ RM×F , b ∈ RB×F are layer-specific network weight and
bias parameters, respectively. This propagation is motivated
by the first-order approximation of Chebyshev polynomials in
the spectral domain [23], [24], leading to a fast computational
speed. Additionally, the approximation is accurate enough to
develop competitive graph-learning results [23].

Thanks to the introduction of matrix A in (3), graph
topology information can be integrated in the learning system.
However, GCN by itself is designed to focus on spatial char-
acteristics of different graphs from the same distribution [23].
As system dynamics are time-series information, additional
data processing is required to extract the temporal correlation
among data in the time sequence. We follow the state-of-the-
art time-series data processing technique in deep learning, i.e.,
LSTM, to design the proposed GRL based on (3). In particular,
the propagation rule of GRL is designed to be recurrent such
that information of previous time-steps in a time-series can
be passed to subsequent ones. Similar to LSTM, we first
formulate1 a cell state for GRL to develop latent time-series
properties from the current time-step input Xt ∈ RB×M :

Ct = ft ∗ Ct−1 + it ∗ C̃t, (4a)

where

ft = σ[D̂−
1
2AD̂−

1
2 (XtWf +Ht−1Uf ) + bf ], (4b)

it = σ[D̂−
1
2AD̂−

1
2 (XtWi +Ht−1Ui) + bi], (4c)

C̃t = tanh[D̂−
1
2AD̂−

1
2 (XtWc +Ht−1Uc) + bc]. (4d)

In (4), Ct ∈ RB×F is the cell state of current time step of
GRL, ∗ denotes Hadamard product, and σ is the sigmoid
function. Matrices ft ∈ RB×F and it ∈ RB×F are the
forget and input “gate” activators that control information flow
from previous cell states and the new input data, respectively
[25]. They investigate the output of the previous time-step
Ht−1 ∈ RB×F ′ and current input to determine whether
respective information presented in (4a) is kept or discarded in
the new cell state, where F ′ is the number of output features in
the previous layer. In the equations, W ∈ RM×F , U ∈ RF ′×F ,
and b ∈ RB×F matrices are tunable neural network parame-
ters. Finally, the output of this GRL is determined based on
the cell state:

Ht = ot ∗ tanh(Ct), (5a)

ot = σ[D̂−
1
2AD̂−

1
2 (XtWo +Ht−1Uo) + bo], (5b)

1Superscript “(l)” is omitted for simplicity.
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Fig. 1. Computation graph of the proposed graph convolutional recurrent
layer.

where ot ∈ RB×F is a final output gate activator which
manipulates the output matrix based on the cell state. Con-
sequently, the propagation rule of a GRL, i.e., (4) and (5), can
be expressed as the following shorthand form:

H
(l)
t = GRL(Xt, F,H

(l)
t−1, C

(l)
t−1,Ω), (6)

where Ω is the collection of network parameters. Fig. 1
presents an illustration of the data flow in GRL.

B. Network Architecture

In the previous sub-section, we introduced GRL to pro-
cess time-series data with graphical topologies. Meanwhile,
the neural network layer alone cannot enjoy the benefit of
deep learning, i.e., outstanding feature extraction capability
with adequately more layers in the same network. In this
sub-section, we propose a GRL-enabled graph-convolutional
recurrent adversarial model to fully address the challenge of
learning dynamic power network states by machine.

Fig. 2 depicts the layered architecture of the proposed
GRAN, in which “Full” refers to fully connected layers
and numbers are the number of neurons (output features)
in the respective layers. GRAN is composed of two sub-
networks, namely, graph dynamics generator and discrimi-
nator. The former is composed of seven GRL with M =
128, 256, 512, 512, 512, 256, 128 and the respective F equals
to the M value of the next layer, except that F = 1 for the
last one. The latter is composed of a GRL with M = 128,
and three fully connected layers with input dimensions equal
to 512, 512, 64, respectively. This design follows the principle
of adversarial network training paradigm firstly proposed in
generative adversarial network [26]. Both sub-networks form a
two-player minimax game during the network training process.
In the game, the generator tries to develop a sequence of
new graph dynamics, which refer to system states in the
investigated application, based on input historical dynamics.
The discriminator aims to evaluate the authenticity of the
newly generated dynamics. Its output is a real value indicating
whether the generated ones are considered as real dynamics
or not, which will be further elaborated in Section III-D.
Within a well-trained network, the generator forges contin-
uous system dynamics that can “fool” the discriminator. The
architecture accepts time-series data in batches. For example,
it first receives Xt and calculates the output using defined
propagation rules (4), (5). In the process, latent information is

also produced and stored as cell states C. Then the network
receives a new batch Xt+1 and do the calculation again. In this
time, previous latent information is also involved according to
(4a), and temporal correlation information is therefore propa-
gated [22]. Fig. 3 presents the unrolled abstract computation
graph of multi-layer GRL structure used in the architecture,
which corresponds to any two adjacent blocks with recurrent
links (up-left direction arrows) in Fig. 2. Compared with other
generative models, e.g., Boltzmann machine and non-linear
independent component analysis, this generative adversarial
technique does not require Monte Carlo approximations or
invertible generator structure to work well [27].

Let G(·, θG) and D(·, θD) be the mathematical formulation
of the generator and discriminator, which are parameterized by
θG and θD, respectively. Given time-series data X with steps
X1, X2, · · · which follow a distribution PX, the network tries
to develop the subsequent dynamics of X. The following ob-
jective function is used in the minimax game by the generator
and discriminator:

min
θG

max
θD

V (G,D) = EPX
[logD(Xt, θ

D)]

+ EPX
[log(1−D(G(X1,··· ,t−1, θ

G), θD))].
(7)

During the network parameter training process, the generator
optimizes θG to generate realistic system dynamics and fool
the discriminator, leading to a small objective value V (G,D).
At the same time, the discriminator adjusts θD to distinguish
the artificially generated states from the real ones, rendering a
large V (G,D). This process, which will be further elaborated
in Section III-D, emulates the actions of the two players in
the minimax game defined in (7).

C. Graph Dynamics Generator and Discriminator

In the proposed GRAN, GRLs constitute the generator
and the first layer of the discriminator. At the beginning
of the generator, available complete system states are first
transformed into a series of graphs, in which each node
corresponds to a bus in the power grid. Nodes are connected
in accordance with the bus connectivity of the grid topology.
The measured bus positive sequence voltage magnitudes and
angles are assigned to the corresponding node in the graph as
input node features2. Subsequently, the constructed graphs are
input into the graph dynamics generator, in which seven GRLs
are adopted to extract the temporal-graphical characteristics.
Among these layers, the first four with 128, 256, 512, and
512 neurons, respectively, are used to encode the input graphs
into latent feature graphs with 512 node features. The graphs
are later decoded by the other three GRLs with 512, 256,
and 128 neurons, respectively, to predict the next system state
in the future. All layers are activated by Rectified Linear
Units (ReLU) [28]. In the information diffusion process, the
output prediction incorporates both temporal and graphical
correlations of the measurements in the system. For instance,

2In this work, we consider positive sequence voltages. It is possible and
simple to extend the model and adopt negative and zero sequence components
of unbalanced measurements.
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Fig. 2. Layered architecture of the proposed graph-convolutional recurrent adversarial network.
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Fig. 3. Unrolled abstract computation graph of multi-layer GRL structure.

the generator outputs a prediction of Xt+1 given Xt as the
input. During the computation, both historical data features
(Ct−1) and the graph features (D̂−

1
2AD̂−

1
2 ) are involved (cf.

(4) and (5)).
Given the output of a system state prediction by the

generator, the proposed graph dynamics discriminator deter-
mines whether the prediction is realistic based on the learnt
power grid characteristics and immediately past states. This
is achieved by a GRL with 128 neurons, which captures both
the graphical and the temporal correlations of real consecutive
system states. Subsequently, its output is flattened and input
into three fully connected neuron layers, whose propagation
rule is given as follows:

Yt = ReLU(W ′X ′t + b′), (8)

where X ′t is the flattened input data, Yt is the output feature
matrix, W ′ and b′ are layer-specific network parameters. All
layers cooperate to identify the authenticity of the input system
state from the generator.

D. Training and Prediction

Note that in the proposed discriminator, only the first two
fully connected layers with 512 neurons are activated with
ReLU. We adopt linear activation for the last one with 64
neurons. This design facilitates an easier network training
process. In traditional generative adversarial model, the dis-
criminator output is activated with a sigmoid function to
regulate the value in between zero and one [26]. While this
setting makes the output human-readable (e.g., zero for fake
and one for real), such networks suffer from several training
issues such as model collapse where the generator collapses
into a very narrow distribution, rendering the training unstable.
In addition, there is no indication of convergence with the

sigmoid activation function. Hence, we adopt the Wasserstein
metric firstly proposed in [29] to construct smooth gradients
for the discriminator, which utilizes the Earth-Mover distance
as the cost function:

W (PX,PX̂) = inf
γ∼

∏
(PX,PX̂)

E(X,X̂)∼γ ||X − X̂||, (9)

where X̂ is a prediction develop by the generator based on
the learnt distribution PX̂, and

∏
(PX,PX̂) is the collection

of all possible joint distributions of PX and PX̂. Due to the
intractability of the infimum term, the distance is transformed
to its equivalent form [30]:

W (PX,PX̂) =
1

K
sup

||f ||L≤K
EX∼PX

f(X)− EX̂∼PX̂
f(X̂),

(10)

where f(·) is an arbitrary function which refers to the aggre-
gated propagation rule of the neural network, and K is the
Lipschitz constant of f(·), such that

|f(x1)− f(x2)| ≤ K|x1 − x2|. (11)

Specifically, we can use a neural network fΩ parameterized
by Ω to transform (10) into an approximated form

K ·W (PX,PX̂) ≈ max
Ω:||f ||L≤K

EX∼PX
fΩ(X)− EX̂∼PX̂

fΩ(X̂).

(12)

Finally, by clipping Ω into a finite range, e.g., Ω ∈
[−0.01, 0.01] as suggested in [29], the derivative ∂fΩ/∂X is
restrained. This guarantees that there exists a constant K such
that ||f ||L ≤ K [30]. The objective of the discriminator can
be constructed accordingly:

maximize LD = EX∼PX
fΩ(X)− EX̂∼PX̂

fΩ(X̂). (13)

In addition, since the first term in (13) is not involved in the
generator, its objective function is designed as follows:

maximize LG = −E(X,X̂)∼γ ||X − X̂||2 − EX̂∼PX̂
fΩ(X̂),

(14)

where the first term refers to the expected distance between
the generated and real system states.

Given a collection of historical or synthetic power system
dynamics, the parameter training process is conducted in an
offline manner. For each series of consecutive system states
X with T steps, the parameters are updated progressively.
In the i-th step (i ≤ T ), X1,··· ,i is input into the generator
to develop a prediction X̂i+1 of Xi+1, which is adopted to
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computed LG. Subsequently, both the prediction and the real
states are individually appended to X1,··· ,i, which are input
into the discriminator to evaluate fΩ(X̂i+1) and fΩ(Xi+1)
(cf. (13)). For every 32 dynamics, the objective values of both
the generator and the discriminator are utilized to update the
network parameters using RMSprop optimizer. This process
repeats until the discriminator outputs converged LD values.
The resulting network parameters in the generator is employed
in the online prediction of system states.

The training process aims to jointly optimize the numerous
network parameters in the proposed neural network. Nonethe-
less, it is considered impractical to adjust their values without
significant overfitting [22]. To overcome this issue, we adopt a
technique called “dropout” to effectively reduce the correlation
between the output and specific hidden layer neurons [31].
Specifically, this technique randomly sets the output data
of randomly selected neurons3 to zeros during the training
process. Hence, the dropped neurons are temporarily removed
from the computation graph, and more robust data features can
be extracted. No neurons are removed from the graph during
the prediction.

In the online prediction process, only the generator is
involved. Upon finding the most recent time instance τ∗ in
the past with complete historical system states as introduced
in Section II, the predictor inputs all the historical data into
the generator to predict a X̂τ∗+1, which corresponds to S+

τ∗+1

in (1). The prediction is combined with the remaining partial
system states to develop a better estimation using the original
estimator design in [8], which is an implementation of the
XOR operation.

IV. CASE STUDIES

To illustrate the efficacy of the proposed graph-based deep
learning-driven predictor for synchrophasor recovery and pre-
diction, we conduct a series of comprehensive simulations. We
first introduce the employed testing systems and simulation
configurations. Then, the detailed synchrophasor accuracy and
system response time is demonstrated. Next, we investigate
the impact of communication latency and measurement noise
on the predictor. Finally, we study the capability of the
predictor in adapting to power system changes. All case studies
are conducted on computing servers with an Intel Core-i7
CPU at 4.7 GHz and 32 GB RAM. Additionally, nVidia GTX
1080Ti GPUs are employed for neural network computation
acceleration. The testing code is developed in Python, and
PyTorch [32] is used to construct the proposed neural network.

A. Test Systems and Configurations

In this work, we adopt three test systems to thoroughly in-
vestigate the system performance on different scales of power
grids. In particular, the New England 10-machine system [33],
Nordic system [34], and Iceland network system [35] are
employed, each of which is equipped with 39/74/118 buses,
10/20/35 synchronous generators, and 34/102/206 power

3In this work, the probability is set to 30% in the last three fully-connected
neuron layers.

lines, respectively. Classical PMU placement techniques, e.g.,
[36], are utilized to install PMUs to achieve N − 1 observ-
ability.

We consider a variety of system dynamics of disturbances
and faults. For each system, we first generate 100 random
operating conditions by setting load level of each bus to 70%
and 120% of the respective nominal value and use optimal
power flow to establish the conditions with infeasible ones
discarded. Subsequently, 20 000 one-, two-, and three-phase
to ground short circuit contingencies are generated based
on a random condition. The contingencies are cleared with
a random fault clearance time from 0.1 s to 0.4 s. PMU
measurements are constructed using the respective voltages
in the dynamics, which are developed by DSATools [37]. In
practice, the synthetic data can be replaced or enriched by
historical operational data of power grids. Furthermore, we
adopt the real latency values in FNET/GridEye project [38].
For generated measurements in one system state instance, the
corresponding latency values are randomly selected from those
of all frequency disturbance recorders in the project at an
arbitrary time. This configuration accords with the previous
work [8]. Unless otherwise stated, we use the implementation
proposed in [8] as the baseline performance.

To adjust the network parameters in the proposed neural
network, 20 000 dynamics for each test system are divided
into two data sets by the ratio of 3 : 1, which accords with
the common practice [39], [40]. The training set with 15000
dynamics is adopted to train the parameters as elaborated in
Section III-D, while the other one, called testing set, is used
to evaluate the system performance. This design is for cross-
validation of the proposed model, and overfitting problem
can be easily identified where the training and testing set
performances deviate significantly.

B. Accuracy of Synchrophasors

We first investigate the accuracy of the generated syn-
chrophasors by the proposed approach compared with the
ground truth data. We adopt the total vector error (TVE) of
voltage phasors in Sτ and Ŝτ as the performance metric. Let
Sτ = {Vi,τ∠θi,τ | ∀i ∈ V}, Ŝτ = {V̂i,τ∠θ̂i,τ | ∀i ∈ V} where
V is the set of buses in the power system. TVE is defined by

TVE (Sτ , Ŝτ ) =
1

|V ′τ |
∑
i∈V′τ

|V̂i,τ∠θ̂i,τ − V̂i,τ∠θ̂i,τ |
|V̂i,τ∠θ̂i,τ |

, (15)

where V ′τ ∈ V is the set of buses whose measurements are
not available at the control center, i.e., Sτ \ S−τ . This set is
dynamic with respect to different time instances.

The system is trained according to the configurations in-
troduced in Section III-D, and three models are trained for
all three test systems. The TVEs for the proposed approach
as well as the baseline performance are presented in Table I,
and the 99.9% percentile TVE performance of New England
system is demonstrated in Table II. In the table, we use
τ = 0 to represent the current time. The accuracy of recovered
synchrophasors in the past and predicted ones in the future are
summarized, and the training set performance is also presented
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TABLE I
TOTAL VECTOR ERROR OF PREDICTED SYNCHROPHASORS

τ
Proposed (Testing Set) Baseline (SRPF) Proposed (Training Set) Unavailable Data

New England Nordic Iceland New England Nordic Iceland New England Nordic Iceland Percentage
−5 0.02% 0.03% 0.02% 0.02% 0.36% 0.44% 0.02% 0.03% 0.02% 2.49%
−4 0.03% 0.04% 0.04% 0.02% 0.41% 0.47% 0.03% 0.04% 0.04% 6.17%
−3 0.11% 0.12% 0.12% 0.11% 0.50% 0.54% 0.11% 0.12% 0.11% 50.43%
−2 0.56% 0.58% 0.59% 0.96% 1.14% 1.20% 0.53% 0.52% 0.54% 73.98%
−1 0.59% 0.60% 0.62% 1.03% 1.57% 1.63% 0.56% 0.59% 0.55% 94.50%
0 0.62% 0.65% 0.67% 1.04% 1.72% 1.79% 0.59% 0.63% 0.65% 99.86%
1 0.66% 0.70% 0.67% 1.07% 1.80% 1.96% 0.63% 0.67% 0.65%

100%

2 0.73% 0.75% 0.76% 1.10% 1.89% 2.13% 0.63% 0.70% 0.72%
3 0.75% 0.75% 0.77% 1.11% 1.94% 2.21% 0.68% 0.73% 0.72%
4 0.76% 0.78% 0.80% 1.12% 2.01% 2.37% 0.70% 0.73% 0.73%
5 0.89% 0.94% 0.94% 1.14% 2.10% 2.44% 0.89% 0.87% 0.82%

6 to 10 0.94% 0.99% 1.01% 1.34% 2.63% 2.91% 0.92% 0.95% 0.93%
11 to 15 1.01% 1.07% 1.05% 2.08% 3.54% 4.07% 0.96% 1.04% 0.95%

TABLE II
99.9% PERCENTILE TVE OF SYNCHROPHASOR RECOVERY ACCURACY

ON NEW ENGLAND 10-MACHINE SYSTEM

τ
99.9% Percentile Total Vector Error
New England Nordic Iceland

−5 0.02% 0.03% 0.03%
−4 0.03% 0.04% 0.04%
−3 0.11% 0.13% 0.12%
−2 0.59% 0.64% 0.61%
−1 0.61% 0.71% 0.65%
0 0.68% 0.71% 0.68%
1 0.76% 0.71% 0.73%
2 0.74% 0.83% 0.79%
3 0.77% 0.88% 0.81%
4 0.83% 0.93% 0.83%
5 0.93% 0.98% 1.03%

6 to 10 1.00% 1.10% 1.06%
11 to 15 1.07% 1.17% 1.14%

for reference. TVE values of 6 ≤ τ ≤ 15 are averaged for
conciseness.

We first investigate the performance on the New England
10-machine system. From the simulation results, it can be con-
cluded that the proposed graph-based approach significantly
outperforms the baseline performance. For either compared
approaches, TVE is closely related to the total number of
unavailable data: the more unknown, the worse the accuracy.
However, the proposed approach can develop much better
synchrophasor predictions than the baseline for τ ≥ −2,
where almost no measurements are received or sampled. This
is contributed to by the incorporation of graph topology
information into the learning process, which conventionally
must be implicitly learnt from the training data. With this
essential information, the system can greatly benefit from the
small prediction accuracy improvement on each measurement.
Since prediction errors in previous time steps are progressively
strengthened in subsequent steps, the small improvements
accumulate and constitute the significant performance gap on
large τ values. Fig. 4 also demonstrates an illustration of
the recovered and predicted synchrophasors compared with
the ground truth data on a random contingency of the New
England 10-machine system. The dynamics also support our
previous discussion.

When comparing the other two test systems, the improve-
ment of the proposed approach is more remarkable. Further-

TABLE III
COMPARISON OF SYNCHROPHASOR RECOVERY ACCURACY ON NEW

ENGLAND 10-MACHINE SYSTEM

τ
Average Total Vector Error Recoverable Cases

Proposed ICMC SVT Hankel St. ICMC & SVT
−5 0.02% 0.01% 0.12% 0.05% 100.0%
−4 0.03% 0.14% 0.42% 0.09% 99.8%
−3 0.11% 1.46% 0.99% 0.47% 76.5%
−2 0.56% 3.43% 1.15% 0.91% 49.9%
−1 0.59% 4.69% 1.90% 1.36% 9.0%
0 0.62% 4.30% 1.73% 1.50% 1.8%

1 to 5 0.76%
Un-recoverable

1.58%
0.0%6 to 10 0.94% 1.71%

11 to 15 1.01% 1.86%

more, it also possess a critical characteristic that can greatly
enhance its practical implementation, i.e., system scalability
up to more than 100 buses. For the baseline approach, the
system performance deteriorates when the system size is
increased. In both Nordic and Iceland systems, TVE ranges
from 1.8% to more than 4% for synchrophasor predictions
in the upcoming fifteen cycles. While the information can
still demonstrate the general trend of the system dynamics,
it can barely be used in accurate system analysis and control
applications. Nonetheless, this drawback is addressed in the
proposed approach. While the accuracy on Nordic and Iceland
systems are also undermined by the notably increased system
size, the performance gap is minuscule. This is due to the
graph abstraction capability of the proposed GRAN. Recall the
propagation rule of GRL (4) and (5), one may notice that the
dimensions of weight parameters W and U are not related to
the graph size B. This implies that other than the power system
size, the system dynamics characteristics also plays a critical
role in adjusting the weights. Therefore, moderately increasing
the size of the system (up to few hundred buses) does not
have noteworthy influence on the overall performance. We will
further investigate this property of GRAN in Section IV-D.

We also present the TVE comparison of GRAN with matrix
completion methods in the literature, namely, information
cascading matrix completion (ICMC) [13], singular value
thresholding (SVT) [13], and low-rank Hankel structure based
approach (labeled as “Hankel St.”) [16] in Table III. As
illustrated in [13], ICMC and SVT can only recover system
states with at least one available measurement, and therefore
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Fig. 4. An example of recovered and predicted voltage phasors of buses 10, 20, 30 in New England 10-machine system and their ground truths.

cannot be used to predict future states. Nonetheless, the
approach proposed in [16] employs an iterative approach
to gradually recover the missing data points in the Hankel
matrix of synchrophasors, and thus can predict future data.
The parameters are selected according to the recommendations
in the literature. From the results it is obvious that GRAN
outperforms all compared algorithms in most tasks, with the
only exception at τ = −5 where ICMC develops more
accurate system states. However, considering that the TVE
values are minuscule (approx. 0.02%), the improvement is
not significant. Furthermore, as GRAN inherits the capability
of recovering all past states and predicting future ones from
SRPF, it is more capable of handling missing data caused by
communication latencies in WAMS.

Finally, we summarize the computation time of training
GRAN and making predictions. The training takes approxi-
mately 14 h, 14 h, and 15 h on the three test systems with
15 000 contingencies on eight testing GPUs, respectively.
Considering that significant power network changes are typ-
ically well-planned by the system operators days earlier, the
proposed GRAN can be re-trained with new training sets in
sufficiently short time. We will further investigate the system
performance in Section IV-D on small power network changes,
which may not render enough time for a complete re-training.
Furthermore, it takes less than 1 ms to recover one past system
states or predict a future one with the proposed GRAN on
all three test systems with one testing GPU. As modern
WAMS develops 60 Hz samples to the control center, the small
inference time required by GRAN makes it sufficient for real-
time analysis.

C. Impact of Latency and Measurement Noise
In the previous case study, we employ the real world latency

values from FNET/GridEye project, which represents the com-
munication performance of a typical WAMS. Meanwhile, with
the wide adoption of PMUs into modern power systems, the
underlying communication infrastructure may have different
latency properties. In this sub-section, we first assess the
impact of bad communication links on the synchrophasor pre-
diction accuracy. Similar to [8], we manipulate the real latency
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Fig. 5. Total vector error on compared latency scenarios.
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TABLE IV
TOTAL VECTOR ERROR WITH NOISY MEASUREMENTS ON NORDIC

SYSTEM

τ Testing Set Baseline Training Set Noise TVE
−5 to −1 0.69% 1.18% 0.64%

0.59%
0 0.72% 1.96% 0.67%

1 to 5 0.85% 2.14% 0.81%
-6 to 10 1.10% 2.97% 1.03%

11 to 15 1.21% 4.04% 1.15%

values adopted in the previous test (labeled by “baseline”) and
construct the following communication scenarios to emulate
WAMS with bad data transmission conditions:
• Delayed: All latency values are increased by 50%.
• Lossy: Randomly 30% of all PMU measurements are lost

due to communication problems.
• Worst: Both modifications in delayed and lossy scenarios.

The trained systems in Section IV-B is employed to make
predictions based on the new latency scenarios. The results
are depicted in Fig. 5.

From the results it can be observed that bad communication
conditions have negative influences on the accuracy of the
system, though not significant. The performance degradation
compared with the baseline scenario is similar to that recorded
in [8]. This is due to two factors. On the one hand, the
modular sub-system design of SRPF can partially mitigate the
influence of deteriorated communications since the predictor
always looks back in the history to find the most recent
complete system state. All subsequent predictions are based on
valid and true information. Given that the prediction accuracy
is satisfactory, high latency or data loss does not introduce
critical challenges to the system. On the other hand, the
proposed graph-based approach inherits the robustness of deep
neural networks [22]. This is among the main reasons of
adopting deep learning techniques in designing the system.

Besides communication latency, measurement noise is an-
other uncertainty in WAMS [5]. According to IEEE Std.
C37.118.2-2011 [41], measurements sampled by complied
PMUs may contain up to 1% TVE noise. This imposes great
challenges to accuracy-sensitive power system applications. In
this test, we investigate the influence of PMU measurement
noise on the synchrophasor prediction accuracy. In accordance
with previous work [5], [11], [42], we sample a noise phasor
from a truncated complex Gaussian distribution for each
measurement developed in Section IV-A. The noise phasor
is imposed on the corresponding ground truth one to formu-
late new training and testing cases, which are subsequently
employed to train and assess the system performance on the
Nordic system. The predicted synchrophasors are compared
with the ground truth ones, and the accuracy is presented in
Table IV. In the table, averaged TVE of the noise phasor is
also listed for reference.

From the summarized results it can be concluded that
the influence of noisy measurements is notable only when
recovering synchrophasors in the past, i.e., τ ≤ 0. This can
be observed by comparing Tables I and IV. Nonetheless, the
performance degradation for τ ≤ 0 is mainly caused by the
uncertainty of noise itself, which constitutes 0.59% TVE. To

TABLE V
TOTAL VECTOR ERROR OF TESTING DATA WITH VARIOUS NOISE LEVELS

ON NORDIC SYSTEM

τ Up to 0.5% Up to 1.0% Up to 1.5% Up to 2.0%
−5 to −1 0.43% 0.69% 1.00% 1.43%

0 0.44% 0.72% 1.05% 1.50%
1 to 5 0.57% 0.85% 1.22% 1.68%
6 to 10 1.05% 1.10% 1.46% 1.88%
11 to 15 1.13% 1.21% 1.63% 2.06%

explore the reason insignificant noise-caused error occurs for
τ > 0, we conduct a series of simulations and change the
maximum noise TVE to 0.5%, 1.5%, and 2.0%. The results
are presented in Table V. From this table it is clear that when
the noise is small (e.g., maximum 0.5% TVE), the error is
mainly contributed to by the prediction error of GRAN. For
large noises, the dominating factor becomes the noise error.
Nonetheless, as standard PMUs can develop less than 1% TVE
noise [41], the performance degradation is still tolerable. In
addition, the recovery error is consistent with the noise level
despite its changes. This shows the robustness of the proposed
approach, which benefits from the extra graph information in
the training data and the adversarial model.

D. Impact of Power Network Topology Changes

In Section IV-B we discussed the capability of handling
power systems of different sizes with GRAN. In practice, the
topology of real-world power systems is not static. It is quite
common that power grids operate under N−1 or occasionally
N − 2 conditions. Due to the numerous types of N − k
contingencies, it is almost impossible to enumerate all system
dynamics in these conditions to train the prediction system.
Hence, it is of critical importance that the system adapts to
power network changes automatically.

In this sub-section, we investigate the synchrophasor ac-
curacy developed by the system when power grids undergo
contingencies on random N − 1 and N − 2 topologies.
Particularly, we select 25 N−1 and 25 N−2 stable operating
conditions for each of the testing system. In each condition,
100 short circuit contingencies are randomly generated in
accordance with the methodology introduced in Section IV-A,
resulting in 5000 new N−k contingency dynamics. We adopt
the trained system in Section IV-B to predict the missing
synchrophasors in these dynamics to evaluate the impact of
power network topology changes. Note that since the new data
is not used in training, the trained system does not have any
knowledge on the network topology changes.

Fig. 6 depicts the average and 99.9% percentile TVE of the
system on the compared operating conditions. In the figure,
“baseline” refers to the original testing data performance as
in Section IV-B. The simulation results imply that GRAN
possesses great generalization capability. In all three test
systems, N − k topology changes do not have noteworthy
performance impact. This result is mainly contributed to by
the inference robustness of GRAN thanks to the graph-learning
characteristics of the neural network architecture. Furthermore,
a careful investigation in the system dynamics of the generated
N − k contingencies also suggests that the topology changes
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Fig. 6. Average and 99.9% percentile total vector error on compared topology
changes.

do not lead to dramatic changes on the dynamics. This is
also a critical factor that leads to the satisfactory performance
as shown in Fig. 6. On the one hand, N − 1 and N − 2
operating conditions do not impose drastic change on the
physical characteristics of power networks. As a result, the
system dynamics of an event on N − k networks with small
k values are similar to that on the nominal one. On the other
hand, instead of storing the topology in layers of GRAN, the
information is only used to help train the neural network which
extracts and captures high-level characteristics of the topology.
This means that after training, if a new system with similar
topological characteristics is employed, the system can still
yield satisfactory results. This is exactly the case in N − 1
and N −2 operating conditions. Both factors contribute to the
insignificant performance degradation of GRAN on changed

power system topology.
To conclude, when undergoing N − k operations, utilities

can use the nominal system for synchrophasor prediction,
which yields sub-optimal performance. At the same time,
new systems can be trained in parallel to cope with the new
topology if the outage is confirmed to be prolonged. No service
outage will be experienced with this operating paradigm. In
addition, the 99.9% percentile TVE values deviate from the
average ones by less than 0.5%. This statistical indicator
suggests that the proposed system can develop generally stable
recovery and prediction accuracy under moderate topology
changes.

We also adopt the baseline approach in [8] to handle the
same topology changes. With more than 1% TVE increase for
τ = 0 in all three test systems, the performance are not as
satisfactory. Consequently, we can conclude that the proposed
system can better handle power network topology changes
without re-training the system.

V. CONCLUSIONS

In this paper, we propose a new graph-based deep neural
network for predicting synchrophasors in a synchrophasor re-
covery and prediction framework to address the data transmis-
sion latency issues in modern wide area measurement systems.
The proposed system utilizes tailor-made neural network struc-
tures to learn from both the graphical (network) and temporal
characteristics of the power system dynamics. We incorporate
the design principle of recent advancements in deep learning
techniques and propose a new graph-convolutional recurrent
layer, which is capable of explicitly including graph topologies
in the learning process. Furthermore, a graph-convolutional
recurrent adversarial network is constructed based on the new
neural network layer to make predictions on power system
states based on existing network and dynamics information.
To assess the efficacy of the proposed system, a series of
comprehensive case studies are conducted on three test sys-
tems of difference sizes. The results indicate the outstanding
accuracy of the proposed system over the existing imple-
mentation. Additionally, we investigate the robustness of the
proposed system on bad communications and measurement
noise, which do not influence the system notably. Finally, we
use a case study to conclude that the proposed system can
address topology changes well without re-training.
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