
1

Towards Large-Scale Graph-Based Traffic
Forecasting: A Data-Driven Network Partitioning

Approach
Chenhan Zhang, Student Member, IEEE, Shuyu Zhang, Xiexin Zou, Shui Yu, Senior Member, IEEE, and

James J.Q. Yu, Senior Member, IEEE

Abstract—Network partitioning is recognized as an effective
auxiliary approach for solving transportation tasks on large-
scale traffic networks in a domain-decomposition manner. Most
of the existing related partitioning algorithms are explicitly
designed to traffic management problems and merely focus on
the implied topology of the networks. In this paper, towards
the practical problems that happened to traffic forecasting tasks,
we propose a network-partitioning-based domain-decomposition
framework to improve GCN-based predictors’ performance
on large-scale transportation networks. Particularly, we devise
a data-driven network-partitioning approach, namely, Speed-
Matching-Partitioning, which employs not only the topological
features but also the traffic speed observations of traffic networks
for partitioning. Additionally, we propose a data-parallel training
strategy that feeds partitioned sub-networks into independent
predictors for parallel training. The proposed approach is tested
by comprehensive case studies on three real-world datasets to
evaluate its effectiveness. The results indicate that the proposed
approach can help improve GCN-based predictors’ accuracy
and training efficiency on both small and relatively large traffic
datasets. Furthermore, we investigate the model sensitivity to the
selection of graph representations and framework parameters,
and the learning efficiency of the data-parallel training strategy.

Index Terms—Network partitioning, traffic forecasting, dis-
tributed computation, graph neural network, domain decompo-
sition.

I. INTRODUCTION

Intelligent transportation systems (ITS) is among the key
cyber-physical systems constituting one of the principal di-
mensions of smart cities [1]. Effective ITS can produce mas-
sive urban transport information. Recent years have witnessed
a deal of research effort on traffic control optimization and
vehicle management to solve various traffic problems, e.g.,
infrastructure allocation, driver privacy, and traffic congestion

Corresponding author: James J.Q. Yu (email: yujq3@sustech.edu.cn) and
Shui Yu (email: shui.yu@uts.edu.au).

This work is supported by the Stable Support Plan Program of Shen-
zhen Natural Science Fund No. 20200925155105002, by the General Pro-
gram of Guangdong Basic and Applied Basic Research Foundation No.
2019A1515011032, by the Guangdong Provincial Key Laboratory of Brain-
inspired Intelligent Computation No. 2020B121201001, and by Australia ARC
DP200101374 and LP190100676.

Chenhan Zhang and Shui Yu are with the Faculty of Engineering and
Information Technology, University of Technology Sydney, Sydney, Aus-
tralia. Shuyu Zhang and James J.Q. Yu are with the Guangdong Provincial
Key Laboratory of Brain-inspired Intelligent Computation, Department of
Computer Science and Engineering, Southern University of Science and
Technology, Shenzhen, China. Xiexin Zou is with the Department of Electrical
Engineering, The Hong Kong Polytechnic University.

Network 
Partitioning

Worker 1
Data Training

Sensors Model

Worker 3
Data Training

Sensors Model

Worker 2
Data Training

Sensors Model

Speed 
CameraRSU

…

A Sensor 
Station

Fig. 1. An illustration of network partitioning-based task on traffic network
with a crowdsourcing solution.

[2]–[4]. To gain better knowledge and control on the traffic,
some of these ITS applications rely heavily on accurate traffic
forecasting (TF) [5]–[7].

In the traffic domain, there exists a wide range of IoT
sensors that can collect traffic data, e.g., radar-driven road-
side units (RSU) and automatic number-plate recognition-
empowered cameras. The development of the Industrial In-
ternet of Things (IIoT) enables such reliable IoT devices to be
deployed in transportation networks on a large scale to collect
massive traffic data.

This trend makes deep learning-based TF approaches in-
creasingly popular in ITS research [8]. Recently, Graph deep
learning (GDL)-based methods have been seen in the emerging
trend of handling TF problems [9]. By employing GDL
methods, researchers can process the traffic data on graphs,
which breaks through the restrictions of traditional non-spatial
representation of traffic data. Graph Convolutional Networks
(GCN) approach is one of the most important developments
of GDL, which has demonstrated practical feasibility for TF
[10].

Most of the research in this domain (i.e., GCN-based ap-
proaches for TF) focus on optimizing the predictors to improve
the prediction performance, where a plethora of achievements
have been made [11]. Although GCN-based approaches have
been verified to be effective in handling TF, some potential

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 



2

issues also exist. One of them is the practicality of GCN-
based models on large-scale transportation networks (i.e.,
number of transportation nodes greater than 1000 [12]). Unlike
other graph structures (e.g., social networks) where nodes can
correlate without considering their physical distances (a.k.a.
Euclidean space distances), the physical position of nodes
in the traffic network has a significant implication on their
interaction.The primitive GCN-based predictors’ performance
is impeded by this condition [13]. From the view of a single
node in a large-scale traffic network, the GCN operation has to
use the interaction with some nodes that have an overly long
distance from it. From the entire network’s view, GCN on such
a large-scale traffic network may involve massive irrelevant
spatial information, which degenerates the final prediction
performance.

To alleviate the issues, some studies focus on developing
dynamic and adaptive adjacency matrix by learning the latent
spatial dependency from the traffic data in node embedding
[14], [15]. Others attempt to pre-process the traffic net-
works to make GCN-based approaches more efficient [16].
In many large-scale engineering research contexts, Domain-
Decomposition (DD) has been seen as an effective approach
that can develop a solution within a reasonable time [17].
Inspired by its idea, one of the strategies for pre-processing
traffic networks is to use network partitioning methods to
divide the entire traffic network into a group of partitions
to transform the original problem into multiple parallel sub-
problems [18]. Especially in recent years, the crowdsourcing
scheme has been widely-adopted in IIoT, which makes DD
become a quite feasible solution. In a crowdsourcing scenario,
there exist multiple workers, and each worker is assigned a
sub-problem (e.g., training a model with the data of a sub-
network). The workers can process the sub-problem in parallel,
which can effectively accelerate the progress (See Fig. 1 for
an example).

Most of the existing network-partitioning approaches for
transportation networks are based on the graph theory that
they partition a graph considering only the topological fea-
tures [17], [19], [20]. Meanwhile, the majority of them fo-
cus on traffic management optimization measured by macro-
scopic fundamental diagram [20]–[22]. There is not a specific
data-driven network partitioning approach for assisting TF
tasks. Transportation datasets generally incorporate not only
topological features but also other information (e.g., speed
observations, congestion index). Intuitively, leveraging these
data into network-partitioning approaches can develop better
partitioning results, serving GCN-based predictors to improve
the prediction performance.

In this paper, to demonstrate the above idea, we pro-
pose a novel traffic data-driven network partitioning ap-
proach, i.e., Speed-Matching-Partitioning (SMP), as a domain-
decomposition solution to assist TF on large-scale traffic
networks. Different from the existing strategies, SMP parti-
tions the traffic network by merging traffic data (i.e., speed
value) and network topology features. Furthermore, in terms of
model training, we adopt a data-parallel training framework to
improve the overall training efficiency. It is worth noting that
the proposed approach is orthogonal to the aforementioned dy-

TABLE I
SUMMARY OF ABBREVIATIONS (IN OCCURRENCE ORDER)

Abbreviation Full Name

ITS Intelligent transportation system.
TF Traffic forecasting.

IIoT Industrial Internet of Things.
RSU Roadside unit.
GDL Graph deep learning.
GCN Graph convolutional network.

DD Domain-decomposition.
SMP Speed-Matching-Partitioning (our approach).
MGP Multilevel graph partitioning.
DBR Distance-based rule (see Definition 2).
CBR Connection-based rule (see Definition 3).
EBC Edge-betweenness centrality.

SHEM Sorted heavy-edge matching.
SV Speed-value.

namic and adaptive adjacency matrix-based approaches [14],
[15]; they can be combined to achieve better performance. To
investigate whether the proposed network partitioning is ca-
pable of boosting the TF performance of GCN-based models,
we conduct a series of rigorous case studies of the proposed
approach on three real-world datasets. Thanks to the traffic-
data-driven network partitioning approach and the data-parallel
training strategy, our proposed approach helps GCN-based
predictors develop more accurate predictions while improving
the training efficiency.

The main contribution of this paper is as follows:

• A novel Speed-Matching-Partitioning approach serving
the domain-decomposition is proposed. Different from
most of the existing partitioning algorithms that only
consider the topology of traffic networks [17], [19], [20],
towards the TF tasks, the proposed one involves the
speed observations in the partitioning decision. This paper
is among the pioneering studies of using traffic data
characteristics to partition the traffic network.

• A network-partitioning-based domain-decomposition
framework is proposed for TF on large-scale traffic
networks. This framework can be trained in parallel. The
distributed computing nature of this framework promises
it a practical solution for crowdsourcing TF in IIoT.

• A series of comprehensive case studies are performed to
verify the approach performance, seek the best structure
of the proposed approach, and investigate the influence
of graph representation. The results also reveal the sig-
nificance of the constituting components in the proposed
approach.

The remainder of this paper is organized as follows. In
Section II, the background of traffic forecasting and network-
partitioning research is presented. Section III gives some
preceding definitions of this work. Section IV elaborates on
the proposed domain-decomposition framework and network-
partitioning approach. We perform a series of case studies in
Section V to demonstrate their efficacy. Finally, this paper is
concluded in Section VI with a summary of potential future
studies.

A summary of abbreviations involved in this paper is
presented in Table I.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 



3

II. RELATED WORK

A. GCN-based Traffic Forecasting

To exploit the spatial correlation of traffic data, ITS re-
searchers previously introduced Convolutional Neural Net-
works (CNN) into the TF tasks. For example, Ma et al. [23]
proposed an image-based approach that represents the traffic
networks as images and leverages CNN to learn the spatial
dependency. Traditional CNNs are restricted to only process
grid-like spatial structures such as images. However, data are
often sampled in non-Euclidean spaces, such as graphs in the
traffic context. To address this issue, Graph Deep Learning
(GDL) is receiving attention from the community [24], [25].
Graph Convolutional Networks (GCN) are among the recent
machine learning developments that generalize CNN to graph
domains [26]. For TF problems, GCN is widely adopted to
handle various tasks by treating traffic networks as graphs
that can richly take advantage of spatial traffic information
[13], [27]. Zhao et al. [28] proposed a model incorporating
GCN and Gated Recurrent Unit (GRU) to exploit spatial
and temporal features, respectively. Yu et al. [13] proposed
a Spatio-Temporal Graph Convolutional Network (STGCN),
which adopts convolutional structures on both spatial and
time axis, which empowers faster model training speed and
convergences. Besides, STGCN employs fewer parameters to
achieve better scalability. Inheriting the notion of GCN-based
spatial-temporal modeling, Wu et al. [15] integrated dilated
casual convolution in their GCN model, which can extract
spatial dependencies with a larger and more flexible receptive
field in traffic networks. Moreover, this study constructed a
self-adaptive adjacency matrix instead of a fixed adjacency
matrix to make latent spatial correlations preserved. Similar
ideas can be found in some other studies. The authors in
[29] use the attention mechanism to dynamically weight the
adjacency matrix. Guo et al. [14] adopted Fast-GCN [30] as
the GCN model and devised dynamic Laplace matrices to
extract spatial-temporal features from traffic data.

B. Network Partitioning on Traffic Networks

Research on traffic networks has been developed in the
past decades for resolving traffic assignment problems or
optimizing traffic management systems, such as predicting link
flows [31] and route selection [32]. The main two branches
are vehicle network-based approaches and road network-based
approaches. Vehicle network-based approaches treat vehicles
as entities to construct the network [33], [34], while road
network-based approaches regard roads as entities to build the
network [35], [36]. Particularly, our work falls into the realm
of road network-based approaches.

No matter in which branch, network partitioning is con-
sidered a high-efficiency and time-saving approach to solving
the problem due to its distributed nature. Most of the existing
traffic network partitioning approaches adopt graph partition-
ing algorithms, which are based on graph theory and regard
network partitioning as an NP-hard problem [21].

Heuristic algorithms are among the earliest graph partition-
ing algorithms [37], the best known being the Kernighan-
Lin algorithm that can run in O(n3) time complexity [38].

Following subsequent variants of Kernighan-Lin algorithm,
Fiduccia-Mattheyses further achieve a linear-time heuristic that
runs faster in [39]. Other algorithms adopt different strategies
to graph partition, instances of which incorporate probabilistic
implementations (e.g., simulated annealing [40] and genetic
algorithms [41]).

Multilevel Graph Partitioning (MGP) is another family of
graph partitioning algorithms. Compared to simple heuristic
algorithms that may converge to a locally optimal solution,
MGP methods aim to seek globally optimal solutions that
can yield higher-quality partitioning results with a small com-
putational cost. [42] and [43] are recognized as the earliest
MGP methods. Following much of the original structure of
the MGP heuristic in [43], Metis is proposed to find good
partitions at a faster speed [44]. The Metis software package is
widely adopted in various research thanks to its various merits.
Furthermore, Sanders et al. proposed a group of MGP methods
known as Kahip, which achieve a series of good results in
related contests [40], [45].

MGP algorithms demonstrate great applicability to traf-
fic network partitioning. For example, Metis incorporates a
structure that can well process large non-euclidean graphs,
including traffic networks. Besides, a few methods combining
the critical ideas of MGP heuristics have also shown good
traffic network partitioning results [46], [47]. Few of them
are based on the data generated on the traffic networks.
Furthermore, [18] indicates that the TF accuracy improvement
developed by these “topological-only” network-partitioning
approaches is not significant. These findings motivate us to
develop a data-driven network partitioning algorithm as a DD
approach for improving TF accuracy.

Additionally, it is worth noting that while one common goal
of our approach and the prevailing dynamic graph-empowered
GCN-based predictors (e.g., the aforementioned studies [14],
[15], [29]) is to solve the GCN’s learning bottleneck on large-
scale traffic graphs, the notions are different. The proposed
approach is auxiliary, which in essence serves as a framework
to unleash the GCN’s power on a relatively smaller sub-graph
by network partitioning and distributed training. In theory,
these dynamic graph-empowered GCN-based predictors can
be integrated with the proposed approach to developing better
performance.

III. PRELIMINARY

In this section, we first define the problem of traffic forecast-
ing on graphs. Subsequently, two graph construction methods
for traffic networks, which are investigated in this paper, are
introduced. Then, we give a brief introduction of the GCN-
based traffic predictor and a basic working principle of graph
convolution.

A. Traffic Forecasting Problem

Traffic forecasting on traffic networks aims to predict the
future traffic states of all road segments using previously
observed traffic data.

Definition 1 Traffic forecasting on graphs. We represent
the traffic network as a weighted directed graph G = (V, E),

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 



4

where V is a finite set of nodes that |V| = N , E is the set of
edges. Finally, this problem can be formulated as

[Xt−T +1, ..., Xt; E ;G]
f(·)−−→ [X̂t+1, ..., X̂t+H], (1)

where Xt is the observed historical set of traffic data sampled
from N sensor stations at time t, and X̂t denotes the predicted
set; f (·) is the prediction function of the model; T and H are
the lengths of the past and future time window, respectively.

B. Graph Representations of Traffic Networks

In this study, traffic networks are represented as road graphs
to define the spatial structure of traffic data. In particular, we
regard the road segments where each contains a measuring
sensor station as the graph nodes in this representation. Gen-
erally, an original road graph possesses no edge information.
In this paper, we focus on the GCN performance with static
graph structure input. To construct the edges that correlate the
nodes of the graph, we introduce two common methods to
build edges as follows.

Definition 2 Distance-based rule (DBR). In this method,
an edge is constructed depending on the Euclidean space
distances between two nodes [13], [27]. We consider two
nodes to correlate if they are close enough. Based on Gaus-
sian kernel method, the corresponding adjacency matrix A
incorporating edge information is constructed as ϕij = 1 if
i ̸= j and exp

(
−d(i,j)

q2

)
⩾ µ, otherwise 0, where ϕij ∈ A

represents the connectivity between nodes i and j, d(i, j)
denotes the Euclidean space distance between nodes i and
j; µ and q denote user-defined thresholds that control the
sparsity of the matrix and are empirically set to 10 and 0.5 as
did in [13], [27], respectively. Particularly, ϕij = 1 indicates
an edge between nodes i and j, while ϕij = 0 indicates no
inter-connecting edges.

Definition 3 Connection-based rule (CBR). This method
defines an edge following the actual connection of different
road segments [48]. A directed edge is constructed if there
exists a connection between two road segments. An example
of this graph representation is shown in Fig. 2, where eight
road segments are labeled from 1 to 8 and are regarded as
the nodes. For node 1 (i.e., road segment 1), there are three
nodes, i.e., 2, 4, 6, connecting to it directly. Thereby, there are
edges (1, 2), (1, 4), (1, 6), respectively. Additionally, we define
the two directions of bidirectional roads as two nodes (e.g.,
nodes 2 and 3).

1

2

8

7
63

Traffic Structure

1

2

3

4 5

6

7

8

Graph Structure

4 5

Fig. 2. Connection-based rule of edge construction.

C. GCN-based Traffic Predictor

GCN-based TF models are recognized as state-of-the-art
due to their effectiveness in traffic spatial information ex-
traction. In this subsection, we take Spatio-Temporal Graph
Convolutional Network (STGCN) [49] as an example to briefly
introduce the spatial extracting principles of GCN-based mod-
els. STGCN model incorporates several spatial data processing
modules to exploit spatial dependency. The spatial module
performs a graph convolutional operation, which follows the
spectral GCN method that convolves in the spectral domains
[26].

Definition 4 Graph convolution (spectral domain-based).
[?] To process the graph data in the spectral domain, the

normalized graph Laplacian matrix is first computed given
the adjacency matrix A as

L = IN −D− 1
2AD− 1

2 , (2)

where IN ∈ RN∗N is the identity matrix and D =
diag (Σjϕij) ∈ RN∗N is the diagonal degree matrix. Then,
L is decomposed as

L = UΛUT , (3)

where U ∈ RN∗N is the matrix of eigenvectors of L; Λ ∈
RN∗N is the diagonal matrix of κ with Λ = diag (κ), and κ
is the eigenvalues of L in descending order. Subsequently, a
convolution operation is performed in the spectral domain of
the graph and can be formulated as

gθ∗X = gθ
(
UΛUT

)
X = Ugθ (Λ)U

TX, (4)

where X is the input data, ∗ denotes the graph convolutional
operator, and gθ is the kernel with a group of convolution
parameters represented by θ ∈ RN . Thus, an updated feature
of the input X can be computed by the multiplication between
gθ and UTX . Consequently, the spatial correlations among
different nodes in the graph can be learned and stored in the
new features. The graph convolutional operation can be finally
formalized as

X ′ = σ
(
D̃− 1

2 ÃD̃− 1
2Xθg

)
, (5)

where X ′ is the update which contains updated nodal em-
beddings; Ã = A + IN is the adjacency matrix with added
self-connections, D̃ is the diagonal degree matrix of Ã, θg
denotes all the shared parameters in this operation, and σ(·)
is the sigmoid function.

IV. NETWORK PARTITIONING-BASED
DOMAIN-DECOMPOSITION FRAMEWORK

In this work, we propose a network partitioning-based
domain-decomposition framework along with a novel network
partitioning approach, Speed-Matching-Partitioning (SMP),
for GCN-based predictors on large-scale traffic networks. In
this section, we first discuss the problem of GCN’s perfor-
mance on large-scale traffic networks, which motivates us
to develop our method. Then, we give an overview of the
proposed framework, including its basic working pipeline.
Subsequently, we elaborate on the algorithm of SMP, which
is the most important component of the proposed framework.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 



5

A. Performance of GCN on Large-scale Networks

While GCN-based predictors like STGCN [13] have been
widely verified to be effective in handling TF, there still exist
some limitations. A large-scale urban traffic network may
have thousands of road segments distributed in an intricate
pattern. GCN propagate embeddings using the interaction
among nodes in the graph, which makes the learning procedure
quite challenging when the graphs are large and complex. In
this subsection, we discuss two types of degeneration of GCN
performance on large-scale traffic networks.

1) Learning Capacity Degeneration of GCN on Large-scale
Networks: The learning capacity of GCN may degenerate
when transportation networks go large. Unlike other graph
structures (e.g., social networks) where nodes can correlate
without considering their physical distances (a.k.a. Euclidean
space distances), the physical position of nodes in the traffic
network has a significant implication on their interaction.
However, the graph construction methods like the introduced
DBR and CBR inevitably connect some nodes which exactly
have weak latent spatial correlations. From the view of a single
node in a large-scale traffic network, the GCN operation on
the node has to use the interaction with such nodes, which
have weak latent spatial correlation (as illustrated in the top
left corner of Fig. 3). This cannot effectively contribute to
the spatial information learning of the node and, sometimes,
can cause noises that determine the quality of learned spatial
information. Moreover, if there is more than one GCN layer
in the model, accumulated interactions will further enlarge
this negative impact [50]. Consequently, the final prediction
performance of the GCN-based predictors will be depreciated.

2) Training Efficiency Degeneration of GCN on Large-scale
Networks: Large-scale networks also result in low training
efficiency of GCN. The loss term in GCN cannot be precisely
decomposed into individual terms on each sample, which
depends on a mass of other nodes [26]. Due to their inter-
dependency, GCN training imposes a significant memory foot-
print since back-propagation needs to store all the embeddings
from the computational graph to GPU memory. Furthermore,
GCN yields a time complexity of O

(
L∥A∥0F + LNF 2

)
[51], where L denotes the number of layers, N denotes the
number of nodes in the traffic network, ∥A∥0 denotes the
number of nonzeros in the adjacency matrix, and F is the
number of hidden features in the neural networks. Obviously,
when the graph is large and sparse, the time consumption of
training GCN will significantly increase.

B. Framework Overview

In this work, to improve the efficiency of GCN-based
models on large-scale traffic networks and thus improve the
TF performance, we introduce a domain-decomposition-based
framework, as shown in Fig. 3. Specifically, we first leverage
network partitioning approaches to decompose a large urban
network into S smaller sub-networks. We assume that this
process can improve the overall efficiency of GCN. Addition-
ally, a data-parallel training scheme is adopted to train the S
partitions separately and simultaneously on the corresponding
number of independent computing devices. This data-parallel

2.Initial
partitioning

3.Uncoarsening 
& Refinement1.Coarsening

Edge
Collapse

ji

Multilevel Graph Partitioner

i

j
Edge e

Node i

Node j

Speed-Matching-Partitioning

Discriminated by Speed-Matching mechanism

vsNode i Node j

… … …

Sub-network 1

Sub-network S

Prediction 1

Prediction S

…

GCN-based
Model 1

GCN-based
Model S

Network
Partitioning

GPU 1

GPU S

Merge
Results

Original
Network

…

Final
Prediction

Domain-decomposition data-parallel
training framework.

i i

Original Graph Convolution New Graph Convolution

Fig. 3. The schematic of the proposed approach.

training scheme can achieve a ηS = t1/tS times speedup in
ideal conditions, where t1 denotes the time to run the model
on a single compute node, and tS denotes the time to run the
model on S parallel compute nodes.

C. Speed-Matching-Partitioning Approach

Before our elaboration, we first introduce the graph-
theoretic terms involved in the adopted approaches.

Definition 5 Cut. Given a graph G = (V, E), A cut C =
(V1,V2) is a partition of V into two subsets V1 and V2, whose
removal makes a graph disconnected. We have a cut-set of C,
which is the set of edges satisfying {(i, j) ∈ E|i ∈ V1 ∧ j ∈
V2}, i.e., one endvertex in V1 and the other endvertex in V2.

Definition 6 Betweenness centrality. Betweenness centrality
is a measure of centrality in a graph based on shortest paths
[52]. Edge-Betweenness Centrality (EBC) is defined as the
number of the shortest paths that go through an edge in a
graph, which is defined as

E (e) =
∑

i̸=j∈V,e∈E

δ (i, j|e)
δ (i, j)

, (6)

where δ (i, j) denotes the number of different shortest paths
going through nodes i and j — (i, j)-paths, and δ (i, j|e)
denotes the number of shortest (i, j)-paths which contain e
as an inner edge.

Definition 7 Edge collapse. Edge collapse (a.k.a. edge con-
traction) is an operation that eliminates an edge from a
graph and concurrently merge the two vertices it previously

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 



6

0 100 200 300 400 500 600
Road No.

00:00

06:00

12:00

18:00

24:00

Ti
m

e

Idle hours Morning peak Evening peakIdle hours Morning peak Evening peak
0

40

80

Sp
ee

d 
km

/h

Fig. 4. The speed observations in peak hours and idle hours.

connected [53]. Given a graph G = (V, E) incorporating edge
e = (i, j), i ̸= j, the collapse of e deduces a new graph
G′ = (V ′, E ′) with a new node k where V ′ = (V ′\{i, j}∪{k}).

1) EBC Pre-processing-based MGP Algorithm: MGP algo-
rithm involves three phases: (1) coarsening, (2) initial parti-
tioning, and (3) uncoarsening and refinement. In the first two
phases, it is crucial to find suitable candidates to be cut-edges
for partitioning. Usually, a road network can be separated into
different areas by natural and artificial barriers (e.g., rivers,
mountains, and urban boundaries). The sparsely built roads
can serve as good cut-edge candidates since they naturally
overcome these barriers, namely, natural cuts1. Natural cuts
are recognized with high EBCs [54]. Not only natural cuts but
also some edges that possess high EBC can also be regarded
as good cut-edges. We refer to these cut-edges with high EBCs
as High EBC cuts (HEBC-cuts). While EBC might be a useful
reference for providing us a promising pre-processing method
for attaining good cut-edges, it is computationally intractable
[52]. To address this problem, following [55], we approximate
EBC by computing the shortest paths for only a small sample
of node pairings V∗ with V∗ ∈ V instead of the complete
EBC, through comparing the shortest paths for all nodes in a
graph pairwise. This approximation can be formulated as

Eappr (e) =
1

N (N − 1)

∑
i ̸=j∈V∗,e∈E

δ (i, j|e)
δ (i, j)

, (7)

where Eappr (e) denotes the approximate EBC of edge e and
N = |V|. Additionally, we apply a random strategy when
selecting the nodes to pairwise compare, which prevents the
selected nodes from being centered in a narrow area of the
graph.

In this work, Metis is employed as the default MGP par-
titioner, which applies sorted heavy-edge matching (SHEM)
algorithm [56] in coarsening and initial partitioning phases.
A notion of our design is that SMP can be transplanted
to different partitioners incorporating SHEM. In particular,
SHEM assigns discretized weights to the edges according to
their EBCs. On the one hand, we assign high edge weights
to edges with a low EBC and low edge weights to edges
with a high EBC, and the edges with a low EBC are pref-
erentially included in the matching, which will be collapsed
consequently. On the other hand, we discretize the assigned
weights to avoid exaggerated EBCs when the nodes sample
is small. This is because two equivalently significant HEB-

1We define the connections between road segments as edges in this work
and the cut-edges are therefore these road connections.

cuts may be assigned magnitude apart weights. In this way,
all edges distributed in a specific range of approximate EBC
are assigned the same weight. The EBCs of edges in a road
network always follow a power-law distribution, which also
happens to approximate EBC. Thereby, a mapping scheme is
proposed and can be formulated as

we(eij) = ⊥⊥⊥
(
ln
(

1
Eappr(eij)

))
, (8)

where eij denotes the edge that connects nodes i and j;
we(eij) is the weight assigned to edge e; ⊥⊥⊥ (·) denotes
the process of discretization by rounding, to which the SHEM
algorithm is sensitive [57]. Consequently, it is easy to differ-
entiate the potential cut-edges since HEB-cuts are more likely
to survive the coarsening stage.

Algorithm 1: Speed-Matching-Partitioning approach.
Input: Original graph, G = (V, E); Historical traffic

observations (traffic data); The number of
partitions, S; The base factor in formula (10),
b; The weights assigned to different time
periods, λmp, λep, and λih; A SHEM-enabled
MGP.

Output: A group of partitions, {G∗1, ...,G∗S}.
1 A ← construct adjacency matrix of G via Def. 2 or 3
2 foreach each e ∈ E do
3 Eappr(e)θ

∗
i ← approximate the EBC of edge e via

Eq. (7)
4 ωe(e)θ

∗
i ← compute the EBC-based weight via Eq.

(8)

5 foreach each i ∈ V do
6 foreach each j ∈ V | i ̸= j do
7 if ϕij == 1 | ϕij ∈ A then
8 ϑi, ϑj ← calculate the SVs of node i and

node j based on their speed observations
via Eq. (9) and (10)

9 φij ← calculate the magnifying factor for
edge eij via Eq. (11)

10 w∗
e (eij)← compute the magnified weight
via Eq. (11)

11 Configure all magnified weights w∗
e to the pre-defined

MGP partitioner
12 {G∗1, ...,G∗S} ← use the MGP partitioner to divide G

into S partitions

2) Speed-Matching Mechanism: In this paper, we propose
a Speed-Matching mechanism and incorporate it into the
aforementioned EBC pre-processing-based MGP algorithm,
which forms the final Speed-Matching-Partitioning approach.
Conventional graph partitioning approaches identify the cut-
edges by only considering the topological relationships be-
tween nodes. While these approaches can develop satisfactory
partitioning results, for the TF task as defined in this work,
it has been verified that GCN-based predictors cannot obtain
distinctively better performance on these developed partitions
[18]. To overcome this issue, we introduce a speed value

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 



7

50
O i

mp

0.0%

2.0%

4.0%
Pr

op
or

tio
n

50
O i

ep

0.0%

2.0%

4.0%

6.0%

Pr
op

or
tio

n

Fig. 5. Probability distribution functions of Oi in different time quantums.
The x-axes indicate the values of Oi

mp and Oi
mp. The y-axes indicate the

proportion of different values of Oi
mp and Oi

mp.

matching mechanism into cut-edges identified in the coars-
ening step of MGP, as shown in Fig. 3.

To “match” the speed values of two nodes of an edge (i.e.,
two road segments), we introduce a measured value, Speed-
Value (SV), represented by ϑ. We commence by calculating
the SVs. It is known that the observed traffic speeds of a road
segment vary over time. Therefore, it is not representative to
arbitrarily select the average value of the speed observations
within a day as the speed value. Thus, three representative
periods regarding distinct speed observation are sampled, i.e.,
morning peak (7:00–10:00), evening peak (16:00–19:00), and
idle hours (0:00–3:00), to calculate a weighted average value
as SV. As shown in Fig. 4, the observations in the peak periods
and the idle hours can reflect the congested speed and the
maximum speed, respectively. The average speed at node i is
represented by Oi, and be calculated by

Oi = 1
QP

Q∑
z=1

P∑
u=1

xi
z,u, (9)

where Q is the number of sampled days in the adopted dataset;
P is the number of timestamps in the dedicated period; z
and u are the index numbers for Q and P , respectively;
x denotes the speed observation, and xi

z,u represents the
speed observation at timestamp u from day z. Subsequently,
the Oi of morning peak, evening peak and idle hours can
be obtained, respectively, which are denoted as Oi

mp, Oi
ep,

and Oi
ih. As shown in Fig. 5, there exists difference of the

distribution between different Oi, which contribute towards
obtaining dispersed ϑ. Afterwards, we calculate the SV using
linear weighted aggregative method discretization, which can

0.0 2.5 5.0 7.5 10.0 12.5 15.0
ij

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty

ij

Fig. 6. Distribution of φij developed by Eq. (11) with γ derived by Monte
Carlo Approach. We can see the values of φij are bound in [2, 13] and close
to normal distribution.

be formulated as

ϑi = ⊥⊥⊥(logb( 1

λmpO
i
mp︸ ︷︷ ︸

morning peak

+λepO
i
ep︸ ︷︷ ︸

evening peak

+λihO
i
ih︸ ︷︷ ︸

idle hours

)),

(10)
where ϑi denotes the calculated SV of node i; λmp, λep, and
λih are the weights for Oi

mp, Oi
ep, and Oi

ih, respectively; b is
the base factor which can control the level of discretization.
Note that the weights, i.e., λmp, λep, λih and b are user-
controlled parameters, and we set them to 0.4, 0.4 and 0.2
by default. Related case studies about the selection of λmp,
λep, λih, and b will be shown in Section V-C. Additionally,
we know that the traffic observations vary from time and
the change pattern of traffic states vary from different areas.
In practice, Eq. (9) and (10) can be executed in adaptive
modes for capturing the dynamics (e.g., dynamical update of
input traffic speed observations). In this way, we can finally
develop dynamic-aware partitions to serve downstream tasks
that demand real-time performance (cf. online learning).

Subsequently, we apply a matching mechanism in the pro-
cess of edge collapse. From the previous chapter, it is clear
that the graph is coarsened by collapsing the edges which have
low EBCs. Based on this, we further collapse the edges whose
two nodes have similar SVs. This can be physically explained
that such two nodes (i.e., road segments) with similar SVs are
more likely to be in the same flow in the road network, and
their connecting edge should survive in the partitioning. To
achieve this, we magnify the edge weight we introduced in
(9) by the difference of SVs between two endpoints of edge
e, i.e., |ϑi − ϑj |. This process is designed as

φij = logϑr+γ1

(
ϑr + γ2

(|ϑi − ϑj |) + γ3

)
+

logϑr+γ4

(
ϑr + γ5
ϑr + γ6

)
,

(11)

w∗
e (eij) = we (eij)φij , (12)

where φij is the magnifying factor, ϑr is the difference
between the maximum SV and the minimum SV among nodes;
the constant terms γ1, γ2, γ3, γ4, γ5, γ6 are used to suppress
overdispersed results where we use Monte Carlo approach
[58] to obtain a proper portfolio of γ (See Fig. 6 for an
illustration of the results); w∗

e is the magnified weight. Then,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 



8

the partitioner utilizes these magnified weights to discriminate
whether an edge should be collapsed and develop the final
partitioning results. For a better understanding of the audience,
we present the procedures of SMP in order in Algorithm 1.

V. CASE STUDIES

This section undertakes a group of case studies on three real-
world traffic datasets to evaluate the proposed approach. We
first investigate the accuracy of predicted speed by comparing
the proposed approach with baselines. Then, we study how
graph construction methods influence the network partitioning
results and further influence the prediction accuracy. Subse-
quently, we examine the impact of the involved parameters
of the proposed approach on model performance. Lastly, we
assess the training efficiency of the proposed approach.

A. System Configuration

1) Dataset Description: In this work, three real-world
network-wide traffic speed datasets are utilized to verify the
proposed approach. Nav-BJ and Nav-SH are collected from
NavInfo2. Nav-BJ contains traffic data collected from 1159
sensor stations deployed in Beijing city. Nav-SH contains data
collected from 1335 sensor stations in Shanghai city. The
periods of these two datasets are both from March 1st to
March 31st of 2019. PeMSD7 is a public dataset collected
from Caltrans Performance Measurement System (PeMS) by
228 sensor stations in District 7 of California. The data col-
lection period is from May 1st to June 30th of 2012 (without
weekends). In all three datasets, traffic speed observations are
aggregated into 5-minute interval, and Z-Score normalization
is applied. Additionally, when there are missing data points,
linear interpolation is adopted to recover the missing data.
The training, testing, and validation sets are correspondingly
generated, each of which contains 60%, 20%, and 20% of all
data.

2) Compared Approaches: To assess the effectiveness of
our proposed SMP approach, we compare our approach with
the following baselines: (1) HA: Historical Average; (2)
ARIMA: Auto-Regressive Integrated Moving Average model;
(3) GRU: A GRU-based model; (4) STGCN: Original STGCN
model [13]. Additionally, other network partitioning-based
approaches are also introduced to verify the efficacy of our
proposed graph-clustering method, including (5) Random-
STGCN: Using the random graph-partitioning method; (6)
Metis-STGCN: Using the naive Metis partitioner; (7) Kahip-
STGCN: Using the naive Kahip partitioner. We demonstrate
our approach as two variants i.e., SMP-Metis-STGCN and
SMP-Kahip-STGCN, which use Metis and Kahip as the
MGP partitioner, respectively. We use Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE) to evaluate the prediction accuracy

2http://www.nitrafficindex.com

of all approaches, which are defined as

RMSE =

√√√√ 1

n

n∑
i=1

(
Xi − X̂i

)2

, (13a)

MAE =
1

n

n∑
i=1

∣∣∣Xi − X̂i

∣∣∣, (13b)

MAPE =
1

n

n∑
i=1

∣∣∣∣∣Xi − X̂i

Xi + ξ

∣∣∣∣∣× 100%, (13c)

where Xi and X̂i are the ground truth and predicted value,
respectively; ξ3 is a constant which prevents the divide-by-
zero issue if Xi = 0. We consider MAPE the most referable
one among the three metrics, which accords with the common
practice [48], [59].

3) Experiment Setting: Unless otherwise noted, all case
studies adopt the following setting. All tests are conducted on
computing servers with Intel(R) Xeon(R) E5-2620 v4 CPU
and nVidia GeForce RTX 2080 Ti GPUs. For TF, the past
time window is 60 minutes (12 observed data points), and
they are used to forecast traffic speed in the next 15, 30,
and 45 minutes. We employ Adam optimizer to train the
involved neural networks (i.e., STGCN and GRU) for 100
epochs with a batch size of 50, where the learning rate is
1e−3. For STGCN, we follow the parameters setting in [13]
where the set of the hidden sizes for the spatial and temporal
modules is {1, 32, 64, 64, 32, 128}, and the STGCN models
configured in all the related approaches follow this setting for
fairness. For our proposed network partitioning approach, we
set the number of partitions S = 8; the weights λmp, λep, and
λih to be 0.4, 0.4, and 0.2; the base factor b = 2; and the rule
of edge construction to be the DBR.

B. Prediction Accuracy

Tables II, III and IV demonstrate the results of our proposed
approach and the aforementioned baselines on Nav-BJ, Nav-
SH and PeMSD7, respectively. The best results are highlighted
in bold. With simpler models compared to advanced deep
learning models, conventional methods, i.e., HA, and ARIMA,
have relatively large prediction errors. STGCN generally has
the best performance than the other baselines, credited to
its spatial feature learning capacity powered by GCN. The
network-partitioning-based approaches markedly surpass the
methods above. Notably, the two models of our proposed
approach (i.e., SMP-Metis-STGCN and SMP-Kahip-STGCN)
obtain the best results, whose MAPEs outperform original
STGCN by 1.84% (15 min), 1.88% (30 min), and 1.93–
2.07% (45 min) on Nav-BJ; and 1.14–1.19% (15 min), 0.81–
0.82% (30 min), and 1.11–1.13% (45 min) on Nav-SH. It
implies that network-partitioning-based methods are effective
for STGCN to learn the spatial dependency of traffic graphs
to further improve its prediction capacity. Moreover, compared
with those network partitioning-based models using the naive
partitioners (i.e., Metis-STGCN and Kahip-STGCN), distin-
guished performance improvements by our models can also be

3We set ξ = 0.01 in the case studies

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 



9

TABLE II
PERFORMANCE COMPARISON ON NAV-BJ DATASET.

Model
15 min 30 min 45 min

RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%)

HA 7.54 4.19 12.28 7.54 4.19 12.28 7.54 4.19 12.28
ARIMA 8.03 4.39 10.88 12.21 5.91 12.66 19.07 8.85 18.56

GRU 7.34 4.02 13.56 7.61 4.23 14.32 7.56 4.32 14.67
STGCN 4.53 3.10 11.13 4.84 3.28 11.84 5.02 3.40 12.30

Random-STGCN 4.21 2.87 9.70 4.47 3.07 10.65 4.63 3.18 11.19
Metis-STGCN 4.21 2.86 9.68 4.45 3.05 10.55 4.61 3.17 11.12
Kahip-STGCN 4.20 2.84 9.72 4.43 3.02 10.51 4.56 3.14 10.97

SMP-Metis-STGCN 4.19 2.81 9.29 4.41 2.98 10.06 4.50 3.06 10.37
SMP-Kahip-STGCN 4.19 2.81 9.29 4.41 2.98 10.06 4.50 3.06 10.22

TABLE III
PERFORMANCE COMPARISON ON NAV-SH DATASET.

Model
15 min 30 min 45 min

RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%)

HA 6.83 3.74 11.11 6.83 3.74 11.11 6.83 3.74 11.11
ARIMA 5.29 3.94 11.27 5.46 3.97 12.77 5.98 4.21 14.02

GRU 4.96 3.16 10.27 4.94 3.29 10.89 5.09 3.42 11.44
STGCN 5.35 3.22 10.69 5.21 3.29 10.89 5.09 3.42 11.43

Random-STGCN 4.48 3.02 10.05 4.70 3.18 10.70 4.80 3.25 10.92
Metis-STGCN 4.44 3.00 9.99 4.65 3.14 10.56 4.76 3.22 10.80
Kahip-STGCN 4.45 2.95 10.01 4.67 3.16 10.60 4.77 3.23 10.88

SMP-Metis-STGCN 4.36 2.87 9.50 4.53 3.01 10.07 4.63 3.08 10.30
SMP-Kahip-STGCN 4.39 2.87 9.55 4.56 3.01 10.08 4.63 3.08 10.32

TABLE IV
PERFORMANCE COMPARISON ON PEMSD7 DATASET.

Model
15 min 30 min 45 min

RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%)

HA 7.20 4.01 10.61 7.20 4.01 10.61 7.20 4.01 10.61
ARIMA 9.00 5.55 12.92 9.13 5.86 13.94 9.38 6.27 15.20

GRU 4.15 2.35 7.25 5.36 3.04 9.12 6.19 3.52 10.14
STGCN 3.55 2.02 4.82 4.91 2.85 7.10 5.45 3.14 7.67

Random-STGCN 3.52 2.06 4.74 4.73 2.67 6.51 5.37 3.04 7.52
Metis-STGCN 3.49 1.99 4.67 4.59 2.58 6.19 5.34 3.03 7.45
Kahip-STGCN 3.49 1.93 4.59 4.58 2.50 6.09 5.40 2.90 7.27

SMP-Metis-STGCN 3.44 1.92 4.56 4.55 2.49 6.03 5.35 2.87 7.11
SMP-Kahip-STGCN 3.43 1.91 4.55 4.52 2.50 6.07 5.34 2.89 7.19

TABLE V
PERFORMANCE COMPARISON ON GRAPH WAVENET.

Graph WaveNet RMSE MAE MAPE (%)

Original 5.86 3.11 8.21
Metis 5.95 3.19 7.94

SMP-Metis 5.67 3.08 7.72

witnessed. For example, the SMP-Metis-STGCN outperforms
Metis-STGCN by 0.39% (15 min), 0.49% (30 min), and 0.75%
(45 min) on Nav-BJ. This is due to the proposed speed value
matching mechanism enabling the network-partitioning ap-
proach to retain critical spatial correlation during partitioning
to exert the capacity of GCN in spatial learning. We also
observe that the performance of the road segments in the
border of the sub-networks are worse than those in the center
because of the lack of neighboring roads. Additionally, it can
be seen that the performance differences between approaches
using Metis and Kahip as the partitioners are minuscule. This
can be explained by that the adoption of MGP partitioners is

TABLE VI
PREDICTION ACCURACY (MAPE (%)) ON THE PARTITION

STGCN on Nav-BJ

Partition 1 2 3 4 5 6 7 8 Total
No SMP 10.53 15.62 9.13 10.69 10.27 10.58 8.34 9.98 10.66
SMP 10.29 14.19 8.88 10.32 10.15 10.16 8.07 9.60 10.22

STGCN on Nav-SH

Partition 1 2 3 4 5 6 7 8 Total
No SMP 10.17 9.73 13.95 10.03 11.00 9.72 12.58 11.35 11.06
SMP 9.95 9.55 13.34 9.63 10.56 9.40 12.05 10.91 10.67

STGCN on PeMSD7

Partition 1 2 3 4 5 6 7 8 Total
No SMP 7.72 8.03 7.70 6.27 8.98 7.27 7.40 6.65 7.53
SMP 7.28 7.68 7.55 6.17 7.97 6.96 6.95 6.34 7.13

not the main factor in improving model performance.
To assess the generalization ability of SMP, we also compare

the prediction accuracy of Graph WaveNet [15] with/without

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 



10

(a) SMP-Metis on Nav-BJ (distance-
based).

(b) SMP-Kahip on Nav-BJ
(distance-based).

(c) SMP-Metis on Nav-SH
(distance-based).

(d) SMP-Kahip on Nav-SH
(distance-based).

(e) SMP-Metis on Nav-BJ
(connection-based).

(f) SMP-Kahip on Nav-BJ
(connection-based).

(g) SMP-Metis on Nav-SH
(connection-based).

(h) SMP-Kahip on Nav-SH
(connection-based).

Pa
rti

tio
n A

Pa
rti

tio
n 

B Pa
rti

tio
n A

Pa
rti

tio
n 

B

Partition A

Partition B

Partition A

Partition B

Partition Map (zoomed-in) Speed Map (zoomed-in)Partition Map

(i) Two illustration of the speed observations on the areas around the partition boundary. In the speed map, the speed observations are collected at 18:00 (peak
hour) in Mar 28, 2019 on Nav-BJ, where the white dots represent the speed observations distributed in 7.7-33.5 km/h while the red dots represent the speed
observations distributed in 33.5-130 km/h.

Fig. 7. Partitioning results of the proposed approach.

SMP configurations. We present the results of 45 min predic-
tion on PeMSD7 as representative, as shown in Table V. We
can find the improvement by SMP on the prediction accuracy
of Graph WaveNet. It is worth noting that the diffusion
convolution used in Graph WaveNet differs from the spectral
graph convolution used in STGCN, as introduced in Definition
4. Therefore, we can confirm the generalization ability of SMP.

Additionally, we compare the prediction accuracy perfor-
mance of STGCN under with/without SMP configurations on
eight partitions. As the simulation results shown in Table VI,

we can observe that on all the eight partitions, STGCN with
SMP outperforms the one without SMP. This result supports
our statement that the capacity of spatial-temporal GCN model
can be given full play on smaller graph partitions developed
by the proposed SMP. Meanwhile, we notice that the degree of
improvement is different on different partitions; this question
will be investigated in future work.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 



11

1 2 4 8 16 32
Number of Partitions S

7

8

9

10

11
M

A
PE

 (%
)

Nav-BJ
Nav-SH
PeMSD7

(a) Prediction accuracy versus Number of partitions.

1.5 2 4 6 8 10
Base Factor b

5.0

5.5

6.0

6.5

7.0

7.5

M
A

PE
 (%

)

ih=0.8, mp=0.1, ep=0.1

ih=0.1, mp=0.8, ep=0.1

ih=0.1, mp=0.1, ep=0.8

(b) Prediction accuracy versus SV calculating factors.

Fig. 8. Hyperparameter sensitivity.

TABLE VII
PREDICTION ACCURACY VERSUS EDGE CONSTRUCTION METHODS.

Method No. of Edges Model Accuracy (MAPE)

N
av

-B
J DBR 4556

SMP-Metis-STGCN 10.37%
SMP-Kahip-STGCN 10.31%

CBR 4225
SMP-Metis-STGCN 10.50%
SMP-Kahip-STGCN 10.51%

N
av

-S
H DBR 6452

SMP-Metis-STGCN 10.30%
SMP-Kahip-STGCN 10.32%

CBR 5047
SMP-Metis-STGCN 10.29%
SMP-Kahip-STGCN 10.37%

C. Selection of the Graph Construction

In Section IV, we introduce two edge construction methods
to correlate the nodes, namely, Distance-based Rule (DBR)
and Connection-based Rule (CBR). This subsection investi-
gates whether the edge construction methods make a notable
performance difference. We construct both the DBR and CBR
topology for road segments in Nav-BJ and Nav-SH, and apply
SMP to them4. For the audience’s reference, the partitioning
results of Nav-BJ and Nav-SH are visualized as shown in Fig.
7(a)-7(h), where the colored lines denote the trajectories of
all road segments included in a partition. Generally, all the
results indicate clear boundaries between different partitions,
which are accord with to their realistic spatial localization.
These results demonstrate the effectiveness of SMP for achiev-
ing spatial-aware partitioning. However, we observe that the

4PeMSD7 is not included in this test since this dataset does not contain
related trajectory information for visualization.

partitioning on graphs built by CBR performs slightly better
since there are fewer abrupt components in each partition,
thanks to that CBR reserves more realistic traffic spatial
relations among road segments when constructing graphs.
Furthermore, we also illustrate the speed observations on the
areas around the partition boundary as shown in Fig. 7(i).
From the two examples, it is clear that in the boundary areas
the road segments in different partitions report distinct speed
observations. This demonstrates that SMP can identify the cut
edges based on the speed observations on the traffic networks.

Table VII presents the TF performance in terms of the
two edge construction methods. It can be observed that the
performance difference w.r.t. two edge construction methods
is relatively small on Nav-SH compared to that on Nav-BJ.
Even though the graph built by the CBR makes SMP develop
better partitioning results, it cannot help improve the prediction
accuracy where the performance even worsens on Nav-BJ.
Furthermore, the two edge construction methods generate
graphs with very different numbers of edges on Nav-SH (See
Table VII), and the slight performance difference implies that
our proposed approach is robust to this variation.

D. Selection of Network-partitioning Parameters
1) Sensitivity to the Number of Partitions: We first inves-

tigate the sensitivity of model performance to the number of
partitions by comparing the prediction accuracy under a group
setting of S ∈ {1, 2, 4, 8, 16, 32}, where S = 8 is the previ-
ously default setting and S = 1 represents the original STGCN
approach (i.e., without network partitioning). Particularly, We
perform this test using the SMP-Metis-STGCN model. From
the results shown in Fig. 8(a), the best parameter of the number
of partitions varies from dataset. It is S ∈ {8, 4, 4} for Nav-
BJ, Nav-SH and PeMSD7, respectively. It can be concluded
that fine-tuning this parameter can further improve the model
performance, and an overlarge one may slightly degenerate the
model performance.

2) Selection of the SV Calculating Factors: We now inves-
tigate the model sensitivity to the parameters λih, λmp, λep,
and b of the SMP approach. Specifically, we test the prediction
accuracy with the base factor b ∈ {1.5, 2, 4, 6, 8, 10}, where
b = 2 is the default setting. Moreover, to seek the time period
whose speed observations can most significantly contribute to
the final prediction performance, we set λmp, λep, λih to 0.8
by turns while the other two weights are set to 0.1. We use
PeMSD7 to demonstrate their sensitivities due to the small size
of this dataset. Offline experiments show that Nav-BJ and Nav-
SH indicate a highly similar pattern. The simulation result in
Fig. 8(b) indicates that the model performance is not sensitive
to the exact choice of the base factor b. As regards λ, the
worst accuracy is obtained when λih = 0.8 for any b. We can
conclude that λmp and λep are preferable when calculating
the SVs. This can be explained that the speed observed during
idle hours usually approximates the maximum speed of a road
segment. However, the maximum speeds are generally set the
same for the majority of road segments in a city (e.g., 60km/h),
making the calculated SVs undiversified, which further shakes
the ground of the proposed Speed-Matching mechanism give
full play in the network partitioning approach.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 



12

TABLE VIII
TRAINING TIME CONSUMPTION OF SMP-METIS-STGCN

Training Time (s) & Number of Included Nodes (Nav-BJ)

Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 Partition 7 Partition 8 Actual
S = 1 1125.1 (1159) − − − − − − − 1125.1
S = 2 558.6 (596) 534.0 (563) − − − − − − 558.6
S = 4 297.0 (291) 294.0 (287) 289.0 (283) 300.4 (298) − − − − 300.4
S = 8 180.4 (149) 173.1 (142) 180.3 (149) 174.2 (142) 174.8 (143) 175.6 (144) 176.7 (145) 176.8 (145) 180.4

Training Time (s) & Number of Included Nodes (Nav-SH)

Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 Partition 7 Partition 8 Actual
S = 1 1303.4 (1335) − − − − − − − 1303.4
S = 2 627.8 (664) 640.3 (671) − − − − − − 640.3
S = 4 325.4 (327) 325.4 (327) 337.9 (341) 335.7 (340) − − − − 337.9
S = 8 187.0 (162) 189.8 (164) 192.4 (168) 196.0 (171) 195.6 (171) 188.0 (162) 194.2 (170) 191.2 (167) 196.0

10 20 30 40 50 60 70 80
Training Epoch

11

12

13

M
A

PE
 (%

)

S=1
S=2
S=4
S=8

(a) Nav-BJ.

10 20 30 40 50 60 70 80
Training Epoch

10

11

12

13

14

15

M
A

PE
 (%

)

S=1
S=2
S=4
S=8

(b) Nav-SH.

Fig. 9. Validation MAPE versus Training epoch

E. Training Efficiency

To see the benefits of the proposed data-parallel training
framework, we summarize the comparison of the learning
curve and training time between the approach adopting data-
parallel training (SMP-Metis-STGCN) and the approach with-
out (original STGCN). To demonstrate a more distinguishing
result, we conduct this training efficiency test on two relatively
large-scale datasets, i.e., Nav-BJ and Nav-SH. Additionally,
the performance comparison between S ∈ {1, 2, 4, 8} is
demonstrated, where the corresponding number of GPUs are
used in each test. Fig. 9 depicts the learning curves on both
datasets. From the results, we can observe that faster and
smoother convergence can be achieved when data-parallel
training is adopted (i.e., S ∈ {2, 4, 8}). However, the efficiency
improvement is minuscule between S = 4 and S = 8,
indicating a bottleneck of GPU training acceleration.

Besides, we compare the training time and present the
results on Nav-BJ and Nav-SH in Table VIII, respectively.
In particular, we calculate the training time on each partition
(GPU), and the most extended time consumption among all
the partitions is recognized as the practical time consumption
under data parallelism. To investigate the correlation between
the training time and the size of each partition, we also present
the number of included nodes in each partition for reference.
From the results, it can be observed that increasing S can
contribute to the decrease in training time. SMP reduces the
time consumption of each partition since the average number
of nodes in each partition usually decreases with the number
of partitions. Furthermore, we can find that training time has
a positive correlation with the size of partitions, i.e., the larger
the partition, the longer the training time. To conclude, such a
data-parallel training strategy can speed up the convergences
and reduce the training time to a great extent. These features
are particularly essential for developing complex neural net-
works that may need exponentially increasing training time
on large-scale traffic networks. Furthermore, in the industrial
sense, crowdsourcing TF schemes in IIoT can optimize the
resource allocation per these features to increase the overall
efficiency, which will be investigated in future work.

VI. CONCLUSION

In this paper, based on the network-partitioning technique,
we devise a domain-decomposition solution to the perfor-
mance degeneration problem of GCN-based predictors on
large-scale traffic forecasting. We propose a novel network-
partitioning approach, namely, Speed-Matching-Partitioning
(SMP). This approach utilizes both the topological feature and
the traffic speed observations of traffic networks to preserve
critical edges during the partition, making traffic predictors
fully capture the spatial dependency in transportation net-
works. Besides, we introduce a data-parallel training frame-
work to accelerate the training procedure of the partitions de-
veloped by SMP. We carry out a series of case studies based on
three real-world datasets with the state-of-the-art GCN-based
predictor. A significant improvement in the prediction accuracy
and learning efficiency has been achieved with the proposed
approach compared with other baselines. We also find that the
graph representation does not have a notable influence on the
model performance in practice, and all parameters employed

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 



13

by the proposed network-partitioning approach contribute to
the TF task with different importance.

Future work can be divided into two categories. First, we
plan to optimize the current graph partitioning algorithm to
further improve its capacity. Second, we will investigate the
interpretability of such traffic data-driven network-partitioning
approaches with in-depth theoretical analysis.

REFERENCES

[1] C. Lin, G. Han, J. Du, T. Xu, L. Shu, and Z. Lv, “Spatiotemporal
congestion-aware path planning toward intelligent transportation systems
in software-defined smart city iot,” IEEE Internet of Things Journal,
vol. 7, no. 9, pp. 8012–8024, 2020.

[2] A. Lei, H. Cruickshank, Y. Cao, P. Asuquo, C. P. A. Ogah, and
Z. Sun, “Blockchain-based dynamic key management for heterogeneous
intelligent transportation systems,” IEEE Internet of Things Journal,
vol. 4, no. 6, pp. 1832–1843, 2017.

[3] A. Ferdowsi, A. Eldosouky, and W. Saad, “Interdependence-aware game-
theoretic framework for secure intelligent transportation systems,” IEEE
Internet of Things Journal, pp. 1–1, 2020.

[4] L. Qi, M. Zhou, and W. Luan, “A two-level traffic light control
strategy for preventing incident-based urban traffic congestion,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 1, pp.
13–24, 2018.

[5] L. Zhu, F. R. Yu, Y. Wang, B. Ning, and T. Tang, “Big data analytics
in intelligent transportation systems: A survey,” IEEE Transactions on
Intelligent Transportation Systems, vol. 20, no. 1, pp. 383–398, 2018.

[6] F. Zhou, Q. Yang, K. Zhang, G. Trajcevski, T. Zhong, and A. Khokhar,
“Reinforced spatiotemporal attentive graph neural networks for traffic
forecasting,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6414–
6428, 2020.

[7] C. Zhang, S. Zhang, J. James, and S. Yu, “Fastgnn: A topological
information protected federated learning approach for traffic speed
forecasting,” IEEE Transactions on Industrial Informatics, 2021.

[8] W. Shao, F. D. Salim, T. Gu, N.-T. Dinh, and J. Chan, “Traveling officer
problem: Managing car parking violations efficiently using sensor data,”
IEEE Internet of Things Journal, vol. 5, no. 2, pp. 802–810, 2017.

[9] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, 2020.

[10] Q. Zhang, Q. Jin, J. Chang, S. Xiang, and C. Pan, “Kernel-weighted
graph convolutional network: A deep learning approach for traffic fore-
casting,” in 2018 24th International Conference on Pattern Recognition
(ICPR). IEEE, 2018, pp. 1018–1023.

[11] Y. Wang, D. Zhang, Y. Liu, B. Dai, and L. H. Lee, “Enhancing
transportation systems via deep learning: a survey,” Transportation
research part C: emerging technologies, vol. 99, pp. 144–163, 2019.

[12] M. T. Asif, J. Dauwels, C. Y. Goh, A. Oran, E. Fathi, M. Xu,
M. M. Dhanya, N. Mitrovic, and P. Jaillet, “Spatiotemporal patterns
in large-scale traffic speed prediction,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 2, pp. 794–804, 2013.

[13] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: a deep learning framework for traffic forecasting,” in Proceedings
of the 27th International Joint Conference on Artificial Intelligence,
2018, pp. 3634–3640.

[14] K. Guo, Y. Hu, Z. Qian, Y. Sun, J. Gao, and B. Yin, “Dynamic graph
convolution network for traffic forecasting based on latent network of
laplace matrix estimation,” IEEE Transactions on Intelligent Transporta-
tion Systems, 2020.

[15] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep
spatial-temporal graph modeling,” in International Joint Conference on
Artificial Intelligence 2019. International Joint Conferences on Artificial
Intelligence, 2019, pp. 1907–1913.

[16] B. P. L. Lau, S. H. Marakkalage, Y. Zhou, N. U. Hassan, C. Yuen,
M. Zhang, and U.-X. Tan, “A survey of data fusion in smart city
applications,” Information Fusion, vol. 52, pp. 357–374, 2019.

[17] C. N. Yahia, V. Pandey, and S. D. Boyles, “Network partitioning algo-
rithms for solving the traffic assignment problem using a decomposition
approach,” Transportation Research Record, vol. 2672, no. 48, pp. 116–
126, 2018.

[18] T. Mallick, P. Balaprakash, E. Rask, and J. Macfarlane, “Graph-
partitioning-based diffusion convolutional recurrent neural network for
large-scale traffic forecasting,” Transportation Research Record, vol.
2674, no. 9, pp. 473–488, 2020.

[19] P. Johnson, D. Nguyen, and M. Ng, “Large-scale network partitioning for
decentralized traffic management and other transportation applications,”
Journal of Intelligent Transportation Systems, vol. 20, no. 5, pp. 461–
473, 2016.

[20] K. An, Y.-C. Chiu, X. Hu, and X. Chen, “A network partitioning
algorithmic approach for macroscopic fundamental diagram-based hier-
archical traffic network management,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 4, pp. 1130–1139, 2017.

[21] R. Saedi, M. Saeedmanesh, A. Zockaie, M. Saberi, N. Geroliminis,
and H. S. Mahmassani, “Estimating network travel time reliability
with network partitioning,” Transportation Research Part C: Emerging
Technologies, vol. 112, pp. 46–61, 2020.

[22] L. Ambühl, A. Loder, N. Zheng, K. W. Axhausen, and M. Menendez,
“Approximative network partitioning for mfds from stationary sensor
data,” Transportation Research Record, vol. 2673, no. 6, pp. 94–103,
2019.

[23] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning
traffic as images: a deep convolutional neural network for large-scale
transportation network speed prediction,” Sensors, vol. 17, no. 4, p. 818,
2017.

[24] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[25] C. Zhang, J. J. Yu, and Y. Liu, “Spatial-temporal graph attention net-
works: A deep learning approach for traffic forecasting,” IEEE Access,
vol. 7, pp. 166 246–166 256, 2019.

[26] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[27] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in International Con-
ference on Learning Representations, 2018.

[28] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li,
“T-gcn: A temporal graph convolutional network for traffic prediction,”
IEEE Transactions on Intelligent Transportation Systems, pp. 1–11,
2019.

[29] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, 2019, pp. 922–929.

[30] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” Advances in
neural information processing systems, vol. 29, pp. 3844–3852, 2016.

[31] X. Song, Y. Guo, N. Li, and L. Zhang, “Online traffic flow prediction for
edge computing-enhanced autonomous and connected vehicles,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 3, pp. 2101–2111,
2021.

[32] B. Mao, F. Tang, Z. M. Fadlullah, and N. Kato, “An intelligent
route computation approach based on real-time deep learning strategy
for software defined communication systems,” IEEE Transactions on
Emerging Topics in Computing, vol. 9, no. 3, pp. 1554–1565, 2019.

[33] B. Mao, F. Tang, Z. M. Fadlullah, N. Kato, O. Akashi, T. Inoue,
and K. Mizutani, “A novel non-supervised deep-learning-based network
traffic control method for software defined wireless networks,” IEEE
Wireless Communications, vol. 25, no. 4, pp. 74–81, 2018.

[34] B. Mao, F. Tang, Y. Kawamoto, and N. Kato, “Ai models for green com-
munications towards 6g,” IEEE Communications Surveys & Tutorials,
2021.

[35] J. James, “Graph construction for traffic prediction: A data-driven
approach,” IEEE Transactions on Intelligent Transportation Systems,
2022.

[36] T. Liu, A. Jiang, X. Miao, Y. Tang, Y. Zhu, and H. K. Kwan, “Graph-
based dynamic modeling and traffic prediction of urban road network,”
IEEE Sensors Journal, vol. 21, no. 24, pp. 28 118–28 130, 2021.

[37] P.-O. Fjällström, Algorithms for graph partitioning: A survey.
Linköping University Electronic Press Linköping, 1998, vol. 3.

[38] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell system technical journal, vol. 49, no. 2,
pp. 291–307, 1970.

[39] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in 19th Design Automation Conference.
IEEE, 1982, pp. 175–181.

[40] H. Ushijima-Mwesigwa, C. F. Negre, and S. M. Mniszewski, “Graph
partitioning using quantum annealing on the d-wave system,” in Pro-
ceedings of the Second International Workshop on Post Moores Era
Supercomputing, 2017, pp. 22–29.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 



14

[41] Y.-H. Kim, Y. Yoon, and Z. W. Geem, “A comparison study of harmony
search and genetic algorithm for the max-cut problem,” Swarm and
evolutionary computation, vol. 44, pp. 130–135, 2019.

[42] T. N. Bui and C. Jones, “A heuristic for reducing fill-in in sparse matrix
factorization,” in Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scientific Computing. SIAM, 1993, pp. 445–452.

[43] B. Hendrickson and R. W. Leland, “A multi-level algorithm for parti-
tioning graphs.” SC, vol. 95, no. 28, pp. 1–14, 1995.

[44] S. Benhamed and S. Nait-Bahloul, “Optimization of rdf data preprocess-
ing for metis partitioning,” in Europe and MENA Cooperation Advances
in Information and Communication Technologies. Springer, 2017, pp.
245–253.

[45] G. Kara and C. Özturan, “Algorithm 1002: Graph coloring based
parallel push-relabel algorithm for the maximum flow problem,” ACM
Transactions on Mathematical Software (TOMS), vol. 45, no. 4, pp. 1–
28, 2019.

[46] D. Delling, A. V. Goldberg, I. P. Razenshteyn, and R. F. F. Werneck,
“Graph partitioning with natural cuts,” in 25th IEEE International
Symposium on Parallel and Distributed Processing. IEEE, 2011, pp.
1135–1146.

[47] H. Yuan and G. Li, “Distributed in-memory trajectory similarity search
and join on road network,” in 2019 IEEE 35th international conference
on data engineering (ICDE). IEEE, 2019, pp. 1262–1273.

[48] K. Guo, Y. Hu, Z. Qian, H. Liu, K. Zhang, Y. Sun, J. Gao, and B. Yin,
“Optimized graph convolution recurrent neural network for traffic pre-
diction,” IEEE Transactions on Intelligent Transportation Systems, pp.
1–12, 2020.

[49] H. Yu, Z. Wu, S. Wang, Y. Wang, and X. Ma, “Spatiotemporal recurrent
convolutional networks for traffic prediction in transportation networks,”
Sensors, vol. 17, no. 7, p. 1501, Jun. 2017.

[50] G. Li, M. Mueller, G. Qian, I. C. Delgadillo Perez, A. Abualshour, A. K.
Thabet, and B. Ghanem, “Deepgcns: Making gcns go as deep as cnns,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.
1–1, 2021.

[51] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 257–266.

[52] A. Furno, N.-E. El Faouzi, R. Sharma, and E. Zimeo, “Two-level
clustering fast betweenness centrality computation for requirement-
driven approximation,” in 2017 IEEE International Conference on Big
Data (Big Data). IEEE, 2017, pp. 1289–1294.

[53] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and D. Cohen-
Or, “Meshcnn: a network with an edge,” ACM Transactions on Graphics
(TOG), vol. 38, no. 4, pp. 1–12, 2019.

[54] A. Kirkley, H. Barbosa, M. Barthelemy, and G. Ghoshal, “From the
betweenness centrality in street networks to structural invariants in
random planar graphs,” Nature communications, vol. 9, no. 1, pp. 1–
12, 2018.

[55] U. Brandes and C. Pich, “Centrality estimation in large networks,”
International Journal of Bifurcation and Chaos, vol. 17, no. 07, pp.
2303–2318, 2007.

[56] G. Karypis, “Metis: Unstructured graph partitioning and sparse matrix
ordering system,” Technical report, 1997.

[57] J. L. G. Garcı́a, R. Yahyapour, and A. Tchernykh, “Graph partitioning
for fem applications: Reducing the communication volume with dshem,”
in 2019 International Conference on High Performance Computing &
Simulation (HPCS). IEEE, 2019, pp. 779–786.

[58] J. Hammersley, Monte carlo methods. Springer Science & Business
Media, 2013.

[59] J. J. Q. Yu and J. Gu, “Real-time traffic speed estimation with graph
convolutional generative autoencoder,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 10, pp. 3940–3951, 2019.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3218780

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
 


	Introduction
	Related Work
	GCN-based Traffic Forecasting
	Network Partitioning on Traffic Networks

	Preliminary
	Traffic Forecasting Problem
	Graph Representations of Traffic Networks
	GCN-based Traffic Predictor

	Network Partitioning-based Domain-Decomposition Framework
	Performance of GCN on Large-scale Networks
	Learning Capacity Degeneration of GCN on Large-scale Networks
	Training Efficiency Degeneration of GCN on Large-scale Networks

	Framework Overview
	Speed-Matching-Partitioning Approach
	EBC Pre-processing-based MGP Algorithm
	Speed-Matching Mechanism


	Case Studies
	System Configuration
	Dataset Description
	Compared Approaches
	Experiment Setting

	Prediction Accuracy
	Selection of the Graph Construction
	Selection of Network-partitioning Parameters
	Sensitivity to the Number of Partitions
	Selection of the SV Calculating Factors

	Training Efficiency

	Conclusion
	References

