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Abstract— Intelligent transportation systems and related ap-
plications rely on high-quality traffic data. However, the data
collected in real-world is often incomplete, which compromises
the system performance. Traffic data imputation estimates the
missing values by analyzing traffic flow features, therefore can
improve the performance of related applications. Traditional
imputation methods mainly focus on isolated traffic data sensors
or road sections and show their limitations in representing
complex spatial-temporal features. In this paper, we propose
a novel ensemble model named ensemble convolutional au-
toencoder for the task. The observed values, together with
the missing points are reconstructed into a two-dimensional
matrix by the extracted spatial-temporal relation. Convolu-
tional and deconvolutional layers are adopted to encode and
decode spatial-temporal features, respectively. Besides, we train
autoencoders with different input feature maps and ensemble
the outputs by linear combination. Experimental results show
that compared with other traffic data imputation methods,
the proposed method can achieve better accuracy and has
stable performance under various missing data scenarios with
different types and rates.

I. INTRODUCTION

Nowadays, a large amount of traffic data has been col-

lected by the intelligent transportation system (ITS) with a

massive amount of traffic sensors, such as loop detectors,

GPS tracking devices and cameras [1], which monitors the

road section automatically and generates real-time traffic

data. With high-quality traffic data, many data-driven appli-

cations have been developed in ITS [2], e.g., traffic signal

control, traffic flow prediction, etc. However, affected by

many natural and human factors, traffic data collected in

the physical world is not perfect. Missing data is commonly

encountered in many traffic datasets. Typical reasons can be

power failure, transmission error and beyond. It is reported

that the rate of missing data is about 10% in Beijing and it

can reach up to 25% in some cases [3]. Missing data compro-

mise the performance of ITS and its related applications. For

example, in traffic flow prediction, the performance reduces

vividly when the traffic data is incomplete [4]. Traffic data

imputation, which estimates the missing values by analyzing

the spatial-temporal features of the observed values, can be

crucial for improving ITS development.

Traditional traffic data imputation methods can be divided

into three categories, namely, prediction, interpolation, and
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statistical learning [5]. Prediction models realize the imputa-

tion by forecasting, where the missing points are estimated

by analyzing the previously observed data in time series.

Such methods usually include time series modeling, see

references [6], [7] for examples. These methods can be

efficient when the missing rate is minuscule, i.e., only a

few points in a notable time frame are missing. However, an

obvious disadvantage of these methods is that the prediction

model cannot make full use of the observed values after

the missing points, resulting in undermined performance.

Interpolation methods can be generally divided into three

types, namely, spatial-neighboring, temporal-neighboring,

and pattern-similarity [5]. According to the study by Yin et

al., spatial-neighboring is proved not as efficient as the other

two interpolation types [8]. Temporal-neighboring interpola-

tion fills the missing points by calculating the neighboring

observed values in the time series on the same day. Pattern-

similarity interpolation estimates missing points by analyzing

the observed values from the same sensor on different days

where k-nearest neighborhood (k-NN) and local least squares

(LLS) are two typical methods [9]. However, interpolation

methods are based on the assumption that the traffic flow is

highly similar on consecutive days. These methods cannot be

adjusted according to the stochastic changes in daily traffic

flow. In the meantime, statistical learning methods, which can

better capture the stochastic changes in traffic flow, achieve

imputation by estimating a probability distribution model

and iterating the model parameters. Probabilistic principal

component analysis (PPCA) is a typical example in this cat-

egory [3]. Other tensor-based methods reconstruct the traffic

flow into third-order tensor and apply matrix decomposition

methods in model training [10], [11].

With the rapid development of deep learning, many models

have been proposed, such as autoencoder and generative

adversarial network (GAN) for data generation, and there

are results on end-to-end time-series data imputation based

on generative models [12], [13]. Take [12] as an example,

Berglund et al. introduced the probabilistic interpretations

to a bidirectional recurrent neural network to reconstruct

missing samples. In traffic data imputation, autoencoder

was first applied in [14]. This study constructs a denoising

stacked autoencoder (DSAE) with stacked autoencoders as

the hidden layers of a neural network. Subsequent work [15]

further improves DSAE by restructuring the model and con-

ducting experiments on both weekdays and non-weekdays.

At the same time, k-means clustering was applied to analyze

traffic characteristics [16]. Besides, there are results that

improve DSAE from the data augmentation perspective.

Following this line of research, GAN was first employed to



augment the train data. Which together with the observations

are input into DSAE for imputation [17]. Its accuracy had

been greatly improved compared to previous work. However,

these works mainly focused on a standalone traffic sensor or

a road section. Training one model for each sensor or road

section may cause a large amount of computation when the

investigating region is huge and complex. Similar problems

also exist in traffic flow prediction tasks. A convolutional

neural network (CNN) was first adopted to embed traffic

data into a two-dimensional matrix for CNN training [18].

Zhuang et al. extended this work and applied CNN to

data imputation by transforming traffic data imputation into

an image recovery problem [19]. However, the reported

experiment is relatively insufficient.

Despite many results have been reported for traffic data

imputation, there is still room to improve. In this paper, we

proposed an ensemble convolutional autoencoder. The traffic

data is first embedded into a two-dimensional matrix for

extracting spatial-temporal correlations among the raw data.

Then an ensemble of convolutional autoencoders is applied to

perform the data imputation. Each autoencoder has the same

network architecture and is fed with different input feature

maps. We conducted a series of comprehensive case studies

to evaluate the model performance. The main contribution

of this work is summarized as follows.

• We propose an ensemble autoencoder trained by hetero-

geneous input feature maps for traffic data imputation.

The feature maps are constructed by filling the miss-

ing positions with zero and historical average values,

respectively.

• We implement the imputation by CNN-based au-

toencoder. After embedding traffic data into a two-

dimensional matrix, the convolutional layer can extract

spatial and temporal characteristics.

• We evaluate the proposed method on the real-world traf-

fic dataset. The massive results show that compared with

other methods, the proposed method can achieve high

imputation accuracy and maintain robust performance

in different missing types and missing rates.

The remainder of the paper is organized as follows. In

Section II, we present the proposed imputation method with

elaboration on the proposed ensemble convolution autoen-

coder. In Section III, a series of experimental results and

analyses are shown. Finally, the paper is concluded in Section

IV.

II. METHODOLOGY

In this section, we give a detailed introduction of the

proposed ensemble convolutional autoencoder. We first in-

troduce the data pre-processing techniques, including the

data embedding mechanism. Then, we propose a CNN-based

autoencoder for traffic data imputation. Finally, we construct

an ensemble for further performance improvement.

A. Data Preprocessing

In the proposed method, the observed traffic data is first

embedded into a two-dimensional matrix. The horizontal axis
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Fig. 1. Diagram of different missing types. (a) Missing completely at
random. (b) Missing at temporal random. (c) Missing at spatial random. (d)
Missing not at random

represents the time stamp and the vertical axis represents

the ID number of sensors. Since sensors on the same or

adjacent roads are usually numbered consecutively, data from

two neighboring rows in the matrix are collected by two

sensors which are spatially adjacent. Thus, both spatial and

temporal information are represented after transferring by

this scheme. Assuming there are N sensors in a specific

region and each sensor gets M observed values in a day, the

size of the matrix should be N ×M . For the missed points

in traffic data, the corresponding positions in the matrix are

empty.

Let the ground truth traffic data be X = {xij} ∈ R
n×m,

the observed input feature map with missing points is de-

noted as X l = {xl
ij} ∈ R

n×m, where n is the number

of sensors, m is the number of time stamps in a day, and

xij denotes the observed of sensor i at time j. A missing

matrix M = {mij} ∈ B
n×m is defined to record the missing

position, where mij = 1 denotes a missing/null xl
ij value,

and mij = 0 denotes an observed xl
ij . The output imputation

result is denoted as Y = {yij} ∈ R
n×m.

Traffic data missing can be grouped into three categories:

missing completely at random (MCR), missing at random

(MR), and not missing at random (NMR) [4]. As the traffic

data is reconstructed into a two-dimensional matrix, we

divided traffic data missing into four types based on three

categories as shown in Fig. 1, where blocks with dark shadow

are missing. In MCR, all the missing points are randomly

scattered, as shown in Fig. 1a. In MR, missing points are

temporally or spatially neighbored as shown in Fig. 1b

and Fig.1c, respectively. In NMR, the missing points are

gregarious likes blocks as shown in Fig.1d.

B. CNN-based Autoencoder

The missing points and the observed values are often

treated separately in traditional traffic data imputation meth-

ods. In this paper, we use the missing points together with the

observed values as the input, and the output is the complete

traffic data. According to this design, the imputation is
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Fig. 2. Structure of the proposed ensemble convolutional autoencoder.

carried out by an autoencoder neural network that has the

same input and output feature map size. The reconstruction

loss of the autoencoder is the mean squared error between

input and output feature map:

L(X,Y ) = ‖X − Y ‖2. (1)

The imputation error E(X,Y ) is only calculated on the

missing points on input and output feature map. E(X,Y )
is defined as follows:

E(X,Y ) = M ⊙ ‖X − Y ‖2, (2)

where ⊙ is the element-wise multiplication operation.

In the proposed CNN-based autoencoder, convolutional

layers are applied to downsampling for extracting spatial-

temporal features. Deconvolutional layers are applied to

upsampling, which restores the traffic flow data. Specifically,

the encoder consists of four convolutional layers. With a

vector-like convolutional kernel in the first layer, the con-

volutional operation is only performed on one dimension of

the feature map in the respective layer, namely, the temporal

dimension, to focus more on temporal characteristics. The

subsequent three layers all use canonical square convolution

kernels, which extract both spatial and temporal features.

Like the encoder, the decoder consists of four decon-

volutional layers. Contrary to convolution, deconvolution

performs upsampling, which is essentially a reversed convo-

lution. The size of the input feature map is enlarged by zero-

padding according to a specific size, and then the convolution

is performed with the kernel size. The convolution kernel size

is carefully designed to ensure input and output feature maps

have the same size. Symmetrical to the encoder, the last de-

convolutional layer uses a vector-like kernel size. Meanwhile,

the first three deconvolutions use square kernels. To prevent

features from being lost in downsampling, no pooling layers

are applied in the proposed autoencoder for imputation.

As for the activation function, except that the output layer

using tanh, all other hidden layers use LeakyReLU for its

relative simplicity in computation and gradient descent. As

TABLE I

HYPERPARAMETERS OF PROPOSED AUTOENCODER

Layer Kernel Stride Padding In. Channel

Encoder

Conv 1 (1,4) (1,1) (0,1) 1
Conv 2 (4,4) (2,2) (1,1) 16
Conv 3 (4,4) (2,2) (1,1) 32
Conv 4 (3,3) (3,3) - 64

Decoder

Deconv 1 (3,3) (3,3) - 128
Deconv 2 (2,2) (2,2) - 64
Deconv 3 (2,2) (2,2) - 32
Deconv 4 (1,2) (1,2) - 16

a variant of ReLU, LeakyReLU prevents “neurons dying”

when receiving negative input [20]. The architecture of the

proposed autoencoder is concluded in Table I. Let the neural

network parameters be θ, the autoencoder is trained by

minimizing the reconstruction loss:

argmin
θ

L(X,Y ) = argmin
θ

∑

i,j

‖xij − yij‖
2. (3)

This parameter training objective can be optimized using

gradient descent algorithms, e.g., Adam optimizer [21] as

we adopted in the case studies to be discussed in Section

III.

C. Ensemble Convolutional Autoencoder

As mentioned in the previous section, the missing points

in the input data X l are initially null. Typically, null values in

the input feature maps are replaced by zeros before training.

In this work, we augment the data richness by additionally

using historical average values to pad the missing values. The

incentive of using historical average values is based on the

hypothesis that traffic flow data have similar characteristics

over consecutive days. Hence, historical average values can

provide auxiliary information in particular cases, especially

under extreme data loss scenarios like block missing with a

high missing rate. The proposed ensemble convolutional au-

toencoder employs the augmented two sets of data as input,



which is fed into the proposed CNN-based autoencoder as

shown in Fig. 2.

In the proposed ensemble convolutional autoencoder, the

input data with missing positions filled with zeros is denoted

by X1, while the one padded with historical average value

is denoted by X2. Two autoencoders are marked as “AE-1”

and “AE-2”, respectively. After the input feature maps going

through the autoencoders, two matricized outputs Y 1 and

Y 2 can be developed, which share the same dimensionality

since the two autoencoders have the same structure as in

Table I. The outputs are finally ensembled by the following

parameterized data aggregation rule:

Y = α× Y1 + (1− α)× Y2, (4)

where α is the self-adapting weight value of the two autoen-

coders. The weight values, alone with other network parame-

ters, can be updated via backpropagation during training. The

imputation error of the ensemble model is defined identical

to (3).

III. CASE STUDIES

In this section, comprehensive experiments are conducted

to evaluate the performance of the proposed imputation

method. We first give a brief description of the datasets

and experiment settings. Then, we compare the imputation

accuracy of the proposed method with baseline approaches.

Additionally, we inspect how each constituting component

of the proposed ensemble model influences the model per-

formance.

A. Dataset

PeMSD51 is a popular subset of California Performance

Measurement System (PeMS) data. The dataset provides

real-time and historical traffic data populated by the average

traffic speed extracted from District 5 of California. The

PeMS system collects raw speed every 30 seconds and per-

forms aggregation every 5 minutes. Therefore, each sensor

provides 288 observed values for each day. There are in total

153 sensors in District 5, of which 144 sensors from mainline

are adopted in PeMSD5. We test the model performance on

the weekday data ranging from January 1, 2013, to August

31, 2013.

B. Experiment Settings

The missing matrices are generated over all data employed

in the test by random erasure. As spatiotemporal informa-

tion loss may arise when missing data are observed, data

augmentation is utilized in the training stage to give more

information on each day frame. Specifically, for a certain

missing type (c.f. Fig. 1) and missing rate, the erasure is

repeated ten times per day. This means that there are in

total ten input feature maps with different missing points

for each day. Four missing types introduced in Section II-A

are considered in this paper, each of which has data missing

rates ranging from 10% to 50%. The training, validation and

1http://pems.dot.ca.gov/

test sets are sequentially generated, each of which contains

60%, 20%, and 20% of all data. Note that this augmentation

is only conducted on the training set. No changes are made

to the validation or testing set.

When training the proposed ensemble convolutional au-

toencoder, we employ Adam optimizer for network parame-

ter tuning. The learning rate is initially set to 0.001, which

is subsequently dynamically adjusted with a decay rate of

0.5. The model is trained for 500 epochs with a batch size

of 32. The proposed model is implemented by PyTorch,

and all experiments are conducted on an NVIDIA GeForce

RTX 2080Ti GPU. We use Mean Absolute Percentage Error

(MAPE) as the evaluation metric in this paper, which is

defined as follows:

MAPE =
1

n

n∑

i=1

∣∣∣∣
x̂i − xi

xi

∣∣∣∣× 100% (5)

where x̂i is the imputed traffic speed at i, and xi is the

corresponding observed value.

C. Baselines

We employ the following approaches as baselines to

evaluate the performance of the proposed model:

• Historical Average (HA): Missing values are estimated

by averaging the observed values in previous days. In

this paper, we use the historical average of the past 5

days.

• k-NN: k-Nearest Neighborhood performs interpolation

by calculating the average value of the nearest k

neighboring points and has been applied in traffic data

imputation [22]. In this paper, the nearest 4 spatial-

temporal neighbors are used for the calculation.

• Support Vector Regressor (SVR): Following the prin-

ciple of support vector machine, SVR achieves inter-

polation by finding a hyperplane which minimizes the

distance from observed values to the plane [6] .

• Kriging interpolation: Kriging is conducted based on a

statistical model with the covariance of observed values.

Kriging and its improved methods have been applied to

traffic data imputation [23].

• Bayesian Gaussian CP decomposition (BGCP):

BGCP is a state-of-the-art imputation method based on

tensor decomposition. Variational Bayes is adopted to

learn the parameters of the model [10].

D. Performance Comparison

We visualize the imputation result on missing Type 1 at

30% missing rate. Fig. 3 shows the general distribution of

the input and the output. The blank pixels in Fig. 3b indicate

missing points. We can see that the generated output is very

close to the ground truth, demonstrating that our model can

accurately recover the misses.

Fig. 4 show the MAPE of five baseline methods and the

proposed method evaluated with different missing types on

the PeMSD5 dataset, among which the proposed method is

labeled by “AE-Ensemble”. From the simulation results and

comparisons, the following observations are developed:
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Fig. 3. Imputation results on missing Type 1 at 30% missing rate.
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Fig. 4. MAPE of the proposed method compared with baselines for different missing types on PeMSD5 dataset.

• Generally, most methods achieve the highest imputation

accuracy in Type 1 missing (c.f. Fig. 1), which is

completely random missing and has the lowest accuracy

in Type 4 block missing. As an exception, HA performs

imputation by averaging previously observed values.

Therefore, the performance of HA does not fluctuate

with different missing types and rates.

• For the same missing type, the proposed method re-

mains stable performance when the missing rate in-

creases, while other interpolation-based methods de-

crease rapidly. The reason is that the proposed model

aggregates autoencoders by self-adapting weight, which

significantly enhances the robustness.

• Among the four different missing types, the proposed

method achieves better performance in Types 1 and

2. Specifically, the MAPE of the proposed method

outperforms BGCP by nearly 50% (error reduced from

approx. 4% to 2%) in PeMSD5. Missing points are

randomly scattered or spatially continuous distributed

in Types 1 and 2, which means that the missing points

can be estimated by temporally neighboring values. This

observation indicates that the convolution and deconvo-

lution layers in the proposed method have advantages

in presenting temporal adjacency characteristics.

• For Types 3 and 4, the proposed method does not

perform as well as the others. Nonetheless, the proposed

method still introduces improvement in Type 3 over

BGCP (from 7% to 6%) and performs similarly in Type

4. As the missing points are continuously distributed

along the time-axis in these types, this observation

suggests that the proposed model cannot handle the

other types when the observed values can not provide

sufficient temporal correlation among the raw data.

E. Model Analysis

In this work, we adopt an ensemble convolutional au-

toencoder for traffic imputation, which is composed of two

standalone convolutional autoencoders. In this subsection, we

investigate how each of the neural network impacts imputa-

tion accuracy by training and testing them individually. In

accordance with the introduction in Section II-C, the two

autoencoders are marked as “AE-1” and “AE-2”, whose input

is X1 and X2, respectively. The training and testing in this

case study are kept identical to the configurations introduced

in Section III-A.

Fig. 5 shows the MAPE of two autoencoders and the

proposed ensemble model evaluated with different miss-

ing types on the PeMSD5 dataset. We have the following

conclusions from the comparison. First and foremost, the

proposed ensemble method achieves the best performance

in all missing types and missing rates. This observation

accords with the intuition that more temporal information

is provided to the learning system, leading to better latent

information extraction. When comparing the two standalone

autoencoders, AE-1 achieves better performance in Types 1

and 2, and AE-2 achieves better performance in Types 3

and 4. These observations indicate that filling the missing

points with historical average values gives auxiliary temporal

information in Types 3 and 4, in which the missing points

are continuously distributed in time series. However, it may

bring interference information that compromises imputation

accuracy when the missing points are scattered or spatially

continuous in Types 1 and 2. The self-adapting weight values

combine the advantage of two autoencoders in the proposed



10 20 30 40 50

Missing Rate (%)

2

4

6

8

10

12

M
A

P
E

 (
%

)

AE-Ensemble

AE-1

AE-2

(a) Type 1

10 20 30 40 50

Missing Rate (%)

2

4

6

8

10

12

M
A

P
E

 (
%

)

AE-Ensemble

AE-1

AE-2

(b) Type 2

10 20 30 40 50

Missing Rate (%)

2

4

6

8

10

12

M
A

P
E

 (
%

)

AE-Ensemble

AE-1

AE-2

(c) Type 3

10 20 30 40 50

Missing Rate (%)

2

4

6

8

10

12

M
A

P
E

 (
%

)

AE-Ensemble

AE-1

AE-2

(d) Type 4

Fig. 5. MAPE of two autoencoders and the propose ensemble model for different missing types on PeMSD5 dataset.

ensemble. To sum up, compared with a single autoencoder,

the proposed ensemble achieves not only better performance

but also robustness in various missing data scenarios.

IV. CONCLUSIONS

In this paper, we propose a traffic data imputation method

based on a novel ensemble convolutional autoencoder. The

method first embeds the traffic data into a two-dimensional

matrix according to the spatial-temporal characteristics, and

then implements data imputation using an autoencoder con-

sists of convolution and deconvolution layers. In addition,

we use historical average values that provide auxiliary in-

formation in the data pre-processing. Missing points are

respectively filled with zeros and historical average values

to construct different input feature maps. At last, the autoen-

coders trained by different input feature maps are aggregated

by a self-adapting weight value. To evaluate the proposed

method, we conduct comprehensive experiments on four

different missing data scenarios. The results demonstrate that

the proposed method can achieve better imputation accuracy

and robustness compared with baseline approaches. An ab-

lation test is also carried out to validate the effectiveness of

the ensemble over single neural networks.
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