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Abstract— Traffic speed prediction based on real-world traffic
data is a classical problem in intelligent transportation systems
(ITS). Most existing traffic speed prediction models are proposed
based on the hypothesis that traffic data are complete or have
rare missing values. However, such data collected in real-world
scenarios are often incomplete due to various human and natural
factors. Although this problem can be solved by first estimating
the missing values with an imputation model and then applying
a prediction model, the former potentially breaks critical latent
features and further leads to the error accumulation issues.
To tackle this problem, we propose a graph-based spatio-
temporal autoencoder that follows an encoder-decoder structure
for spatio-temporal traffic speed prediction with missing values.
Specifically, we regard the imputation and prediction as two
parallel tasks and train them sequentially to eliminate the
negative impact of imputation on raw data for prediction and
accelerate the model training process. Furthermore, we utilize
graph convolutional layers with a self-adaptive adjacency matrix
for spatial dependencies modeling and apply gated recurrent
units for temporal learning. To evaluate the proposed model,
we conduct comprehensive case studies on two real-world traffic
datasets with two different missing patterns and a wide and
practical missing rate range from 20% to 80%. Experimental
results demonstrate that the model consistently outperforms the
state-of-the-art traffic prediction with missing values methods
and achieves steady performance in the investigated missing
scenarios and prediction horizons.

Index Terms— Traffic speed prediction, missing data, spatio-
temporal modeling, deep learning, multi-task learning.

I. INTRODUCTION

TRAFFIC speed prediction is among the essential func-
tions of modern intelligent Transportation Systems

(ITS) [1]. An accurate traffic prediction model based on
geographically interconnected traffic sensor data is the back-
bone of transportation management. For instance, authorities
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leverage the traffic forecasting results to make operational
decisions, e.g., congestion control, traffic resource allocation,
personalized travel recommendations, etc.

Among all traffic forecasting problems, traffic speed pre-
diction is broadly considered indispensable for ITS research.
Traffic speed forecasting has been extensively studied in the
past decades. Classical methods can be generally categorized
into parametric methods (Autoregressive Integrated Moving
Average [2], Kalman Filtering [3], etc.) and non-parametric
methods (K-Nearest Neighbors algorithm [4], Support Vector
Regression [5], etc.). However, the methods mentioned above
only utilize the raw data for regression modeling without
extracting the data’s latent high-dimensional features, thereby
being unsatisfactory in prediction performance. In addition,
traffic changes are dynamic and complex, i.e., different roads
interact with each other, and traffic speed on the same
road is also time-variant, rendering the necessity for more
advanced methods. The development of deep learning tech-
niques provides researchers and field engineers with new
tools for predicting traffic speed more accurately. Contributed
by the powerful fine-grained feature extraction capability of
deep neural networks (DNN), researchers have embarked
on introducing the Convolutional Neural Network (CNN) to
extract the spatial dependency in traffic data [6]. However,
CNN has limitations on processing traffic data, which is
naturally sampled in non-Euclidean space, i.e., along with
traffic networks. Considering the similarity between traffic
networks and graphs, Graph Neural Networks (GNN) has
been proposed to capture the complex spatial dependencies
from graph topology [7], [8], [9]. GNN-based approaches have
achieved state-of-the-art performance in extracting dependency
from traffic data and predicting future traffic speeds [10].
Besides, considering the temporal dependency in the traffic
data, researchers have focused on the variants of Recurrent
Neural Networks (RNN) [11] such as Long Short-Term Mem-
ory (LSTM) [12] and Gated Recurrent Units (GRU) [13]
to extract traffic dynamics features among the time series
data [7], [9], [14].

However, there is a notable and practical research gap in
the aforementioned methods, especially when the traffic data
are incomplete or corrupted. The majority of existing traffic
prediction methods are proposed based on the hypothesis
that the traffic data are complete or have seldom missing
values. Nevertheless, they are incapable of or inferior in
traffic prediction when there are a larger number of missing
values; see [15], [16], [17] for examples. Taking the Attention
Based Spatial-Temporal Graph Convolutional Networks (AST-
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Fig. 1. The 60 min-ahead speed prediction of ASTGCN model on the
PEMSD7 dataset with different missing rates.

GCN) [18] as an example, its prediction performance shown
in Fig. 1 experiences notable degradation as the missing rate
increases, e.g., MAPE rises from 8.18% to 12.20% as the
missing rate is increased from 20% to 80%. Besides, the
data missing is a practical and common problem for traffic
data collected in practice due to various factors. For example,
considering the hardware failure and communication error
[16], [19], approximately 5% of all traffic data are missing
in PeMS, and the missing rate can reach up to 90% in
extreme cases in Alberta, Canada [20]. In practical scenarios,
the performance of most existing traffic prediction models
fluctuates on multiple datasets because of the missing data,
which is a common and unpredictable phenomenon in real
life. Therefore, we need novel methods to handle the task
of traffic prediction with missing values and achieve stable
performance.

For traffic speed prediction with missing values, a straight-
forward solution is first to estimate the missing values using an
imputation method and then feed the imputed data into a pre-
diction model [17], [21]. Although recent years have witnessed
a plethora of traffic data imputation approaches [22], [23],
directly stacking imputation and prediction models has the
following limitations. First, the instance-level representations
learned in the imputation process are insufficient for the down-
stream task, which needs fine-grained representations. For
example, imputation methods tend to use the average value to
estimate the missing position, leading to over-smoothed impu-
tation results, especially for methods based on tensor decom-
position [23]. Over-smoothed results may lose the dynamics
feature in the traffic data and further render the adverse error
accumulation on the downstream tasks, i.e., traffic speed pre-
diction. Second, the impact of imputation results on prediction
tasks has not been well-studied, namely, whether accurate
imputed data improve prediction performance. Although there
exists research on traffic prediction with missing values [15],
[16], [17], [19], [24], using traditional training methods and
simply concatenating loss functions may undermine prediction
accuracy as well as model interpretability. Furthermore, the
performance comparison with conventional prediction base-
lines in simple scenarios is insufficient to demonstrate their
superiority.

To jointly tackle the above issues and bridge the research
gaps, we propose a novel deep learning model Graph-based
Spatio-Temporal AutoEncoder (GSTAE) for traffic speed pre-
diction with missing values. The major focus of this work
is to improve traffic prediction performance when historical
traffic data contains missing values. GSTAE employs the

autoencoder structure, which combines the Graph Convolu-
tional Networks (GCN) with adaptive adjacent matrix and
GRU to extract the complex spatio-temporal dependencies
in traffic data. Inspired by multi-task learning [25], GSTAE
treats imputation and prediction as two parallel tasks rather
than standalone and consecutive tasks to eliminate the impact
of imputation results on prediction. The encoder module of
GSTAE extracts the generalized representation from traffic
data with missing values. It is capable of handling differ-
ent downstream tasks by connecting with different decoder
models. For the training process, we design a two-stage
training paradigm to achieve multi-task training and improve
prediction accuracy. Specifically, the training starts with an
imputation task, which trains an encoder that extracts dense
representation from traffic data with missing values. Then, the
prediction task is trained based on the pre-trained encoder
to utilize the domain-specific information in the imputation
training process and save computational effort. After the
pre-trained encoder extracts the generalized representation
from traffic data with missing values, the decoder module
makes predictions directly to eliminate the error accumu-
lation issue. The primary contributions are summarized as
follows:

• We propose a novel multi-task learning deep neural net-
work model which follows an encoder-decoder structure
and treats the imputation and prediction as two parallel
tasks to eliminate the impact of imputation on the pre-
diction task.

• We design a two-stage training paradigm to achieve multi-
task training and improve performance on the imputation
and prediction tasks.

• We evaluate the proposed GSTAE with comprehensive
case studies on two real-world traffic datasets and exhaus-
tive missing scenarios. The results indicate that GSTAE
consistently outperforms recent methods for traffic pre-
diction with missing values, which also verifies the
model’s generalization ability.

• We investigate the impact of the imputed results on the
prediction models. The result shows that simple splicing
well-performed imputation and prediction models are not
feasible for traffic prediction with missing data.

The rest of the paper is structured as follows. Sec. II
briefly reviews the recent prediction and imputation methods.
Sec. III presents the formulation of traffic speed prediction
with missing values. Sec. IV introduces the proposed model
GSTAE and gives a detailed training scheme. Sec. V presents
comprehensive case studies on real-world datasets with dif-
ferent missing scenarios. Finally, the paper is concluded in
Sec. VI.

II. RELATED WORK

A. Traffic Prediction

In traffic prediction studies, deep learning models have
generated state-of-the-art performance in the past decade.
RNN, together with its modern variants LSTM and GRU, can
effectively extract traffic dynamics features among the time
series data. In addition to temporal correlation, traffic data
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also contain complex spatial dependencies. GNN, which can
effectively learn non-Euclidean topological correlation, has
shown its advantage in capturing complex spatial correlation
in traffic graphs. Conventional spectral graph convolution
is extensively applied in traffic prediction, see [8], [26] for
examples. Further studies improved graph convolution by an
adaptive dependency matrix [27]. Other studies perform spa-
tial convolutions by propagating information to adjacencies.
For instance, Li et al. utilized bidirectional random walks on
graphs and designed an encoder-decoder to capture the spatio-
temporal dependencies [9], Zheng et al. [28] applied the atten-
tion mechanism to extra the spatio-temporal dependencies.

While the aforementioned approaches have achieved
remarkable performance in traffic prediction, these forecasting
solutions have a non-negligible limitation: they rely on fully
complete raw traffic data for prediction, while such data
collected in real-world scenarios inevitably has missing values.

B. Traffic Data Imputation

Data imputation methods that estimate missing values by
analyzing the sampled traffic data are proposed to address
the missing data issue. Compared to time series imputation
methods designed for general purposes [29], [30], [31], traf-
fic data imputation methods pay more attention to spatio-
temporal modeling and can be broadly grouped into two
categories, namely, tensor decomposition and deep learning.
Tensor decomposition methods utilized low-rank matrix fac-
torization and additional spatial constraints to impute the
missing traffic data [32], [33]. Besides, Chen et al. improved
imputation performance by applying Bayesian inference to the
matrix factorization model [23]. For deep learning methods,
a conventional scheme is to capture spatio-temporal corre-
lations with CNN layers by converting the traffic data into
pictures [34], [35]. In order to extract local information on
graph topology directly and improve imputation accuracy, fur-
ther researches try to apply GNN to the traffic imputation task.
For some examples, Ye et al. incorporated the graph attention
mechanism and an encoder-decoder structure for traffic data
imputation [36]. Wu et al. utilized graph convolution layers
and kriging interpolation to handle the imputation task on
unsampled sensors [37]. Despite the respective outstanding
performance, these methods primarily focus on the imputation
task. They do not yet investigate the impact of imputed
results on downstream traffic data analytic tasks, e.g., traffic
prediction. For the traffic imputation and prediction tasks, they
are closely associated, and the impact of imputation results on
prediction performance is non-negligible. Nevertheless, there
is a notable gap between these two primary ITS applications.

C. Forecasting With Missing Values

It is reported that missing data may compromise the per-
formance of traffic prediction methods [15]. However, few
studies focused on this issue and proposed methods for traffic
prediction with missing data. Cui et al. proposed a stacked
bidirectional LSTM to capture the temporal information and
forecast traffic state, e.g., speed and volume [24]. Zhong et al.

constructed multiple graphs to simulate the dynamic correla-
tion of the transportation network [17]. Although these studies
integrate imputation and prediction tasks, it is complicated for
these models to achieve good performance in imputation and
prediction due to the lack of a suitable training method or loss
function [25], [38], [39]. Moreover, performance comparison
conducted on simple scenarios is insufficient to demonstrate
their superiority. Specifically, these studies only select some
prediction methods for comparison but do not complete the
data through the state-of-the-art imputation methods before
the comparison.

Inspired by previous studies, in this paper, we propose a new
multi-task learning deep neural network model — GSTAE —
based on the simple yet effective encoder-decoder structure
to predict traffic speed with missing values. To facilitate the
multi-task nature of traffic speed imputation and prediction
tasks, they are trained sequentially since the prediction is intu-
itively considered complex and challenging over imputation.

III. PROBLEM DEFINITION

A. Traffic Speed Prediction

The objective of traffic speed prediction is to forecast
the future traffic speed based on historical data measured
from sensor nodes in urban traffic networks. Generally, this
objective can be expressed by

[X(t−Th+1):(t),G] f (·)−−→ X(t+1):(t+Tp), (1)

where X(t−Th+1):(t) ∈ R
Th×N is the historical traffic speed

of N sensors from time step (t − Th + 1) to t . The traffic
prediction model needs to establish a function f to predict
the traffic speed of the next Tp steps based on Th steps in the
past.

B. Traffic Network Graph

In this paper, we denote the urban traffic network by
G = (V, E) to represent prior geo-information [7], [40], where
V is the set of traffic sensors, and E is the set of edges,
which represents the connectivity between sensors. The adja-
cent matrix A ∈ R

N×N of graph G represents the relation-
ship among sensors, which is generated by the thresholded
Gaussian kernel following the well-recognized approach pre-
sented in [7]:

A(i j ) =
⎧⎨
⎩ exp

�
− d2

i j

σ 2

�
, i �= j and

�
− d2

i j

σ 2

�
≥ �

0, otherwise.
, (2)

where di j is the Euclidean distance between sensor nodes i
and j , σ is the standard deviation of distance, and � (set to
0.5 by default [40]) is the threshold that controls the sparsity
of weight matrix A, respectively.

C. Traffic Speed Prediction With Missing Values

For time step t , the traffic speed data can be represented by
X(t) ∈ R

N , which is observed on all N sensors in the traffic
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Fig. 2. Diagram of different missing patterns. The grey blocks represent the
missing positions.

network. A missing mask M(t) ∈ B
N that records the missing

positions is defined by

Mi
(t) =

�
1, if Xi

(t) is observed
0, if Xi

(t) is missing
. (3)

Following the common practice in previous studies [22],
[23], we investigate two representative missing patterns in
this study, namely, Random Missing (RM) and Non-Random
Missing (NRM) [22], [23], which are defined as follows:

• Random Missing (RM): Missing values appear randomly
and independently. Fig. 2a is an example of the Random
Missing pattern, where the grey cells denote the masked
(missing) values and the white ones are the observed
values.

• Non-Random Missing (NRM): In practice, sensor nodes
may fail for a notable period of time, rendering data
loss. Fig. 2b is an example of such Non-Random Missing
patterns.

For the task of traffic speed prediction with missing values,
we need to learn a function g(·) which is capable of predicting
the traffic speed of the next Tp steps based on the graph G,
historical Th steps traffic speed X , and corresponding mask
matrix M . Compared to Eq. (1), g(·) considers the missing
items in the traffic data, and its relationship can be expressed
as

[X(t−Th+1):(t), M(t−Th+1):(t),G] g(·)−−→ X(t+1):(t+Tp), (4)

where X(t−Th+1):(t), M(t−Th+1):(t) ∈ R
Th×N and X(t+1):(t+Tp)

∈ R
Tp×N .

IV. GRAPH-BASED SPATIO-TEMPORAL AUTOENCODER

In this section, we elaborate on the proposed GSTAE in
depth. We begin by introducing the overview of the model
and design of each constituting component. Following that,
we detail each sub-module and its components. Finally, we dis-
cuss the unique training scheme of the proposed model.

A. GSTAE Overview

Fig. 3a illustrates the overall structure of the proposed
GSTAE. The model is structured as an encoder-decoder struc-
ture, which has achieved state-of-the-art performance in a vari-
ety of sequence-to-sequence tasks [41]. The encoder module

extracts the complex spatio-temporal dependencies from the
historical traffic data with missing values and represents them
as a generalized dense representation suitable for downstream
tasks. The decoder is coupled to perform specific downstream
tasks, e.g., imputation and prediction, using the generalized
representation from the encoder module.

For the training process, it is possible to train the task of
traffic prediction with missing values directly. However, the
task from historical traffic speed data with missing values to
future traffic speed data is challenging and complicated for
the model to train. It is true that we can split the task into
two sub-tasks, one for processing historical data with missing
values and imputing historical data and another for process-
ing imputed traffic data and predicting future traffic speed.
Nonetheless, the accumulation of imputation and prediction
errors can adversely affect the combined performance. Inspired
by [42], we treat the encoder module as a unified framework
to extract features from input data, which is suitable for
various downstream tasks, e.g., imputation and prediction.
As prediction and imputation have different characteristics,
imputation and prediction tasks are trained sequentially. It can
be regarded as a trade-off between predicting the future
traffic speed from historical data with missing values and
splitting this task into imputation and prediction sub-tasks.
First, we train the model with the imputation task to enable
the encoder to extract dense representations from the original
data with missing values. In other words, the imputation is
an auxiliary task that speeds up and improves the subsequent
prediction. We view the encoder as a unified framework for
extracting dense representations of data suited for various
downstream tasks. Thus, the encoder extracts features from
the original data while not bringing additional features tailored
for specific tasks. For traffic imputation, existing methods
tend to smoothen the imputed traffic dynamics, which may
not be suitable for subsequent traffic prediction. After the
encoder module is trained by the imputation task, it extracts
the generalized representation from traffic data with missing
values. The pre-trained encoder can speed up and improve the
subsequent prediction training.

In summary, we propose an encoder-decoder-based model
called GSTAE to extract generalized dense representations
from traffic data with missing values and handle two down-
stream tasks, namely, traffic data imputation and prediction.

1) Traffic Data Imputation: As models that follow the
encoder-decoder structure have shown superiority in learning
the hidden representation and reconstructing the data [42],
[43], we design GSTAE following the encoder-decoder struc-
ture. We first train the proposed GSTAE with the imputation
task to extract representations from the original data with
missing values. After the training process, the GSTAE model
can handle the traffic imputation task. We hypothesize that the
encoder has extracted good representations from the original
data with missing values, and the pre-trained encoder can be
transferred to accelerate the prediction training process.

Due to the fact that the traffic data are time series, the
historical traffic state imposes a notable influence on the future
dynamics, rendering future states to reflect the historical ones.
Additionally, traffic data contain complex spatial dependencies
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Fig. 3. Structure of the proposed GSTAE. (a) The model consists of an encoder and decoder. The encoder consists of the forward and backward recurrent
ST-Blocks, the decoder consists of forward recurrent ST-Blocks. (b) The ST-Block is composed of GCN and GRU layers and can be stacked.

within the traffic network topology. As a result, we devise
and employ bidirectional recurrency — ST-Blocks as will be
introduced in Sec. IV-B — to extract the correlated spatio-
temporal dependencies. For the decoder structure, we use
forward recurrent ST-Blocks to generate the prediction output
auto-regressively.

Let X(t−Th+1):(t), M(t−Th+1):(t) and η ∈ R
Th×N be the input

of the model, where Xm = X(t−Th+1):(t) � M(t−Th+1):(t) is the
historical traffic speed data with missing values, � denotes
element wise multiplication. Before feeding Xm to the encoder,
a random noise η sampled from the standard distribution
N (0, 0.01) is first added to historical traffic data Xm based
on the design principle of denoising auto-encoder [43]. Next,
since the location information of missing data is non-negligible
for the model to extract the dense representation [29]. We com-
bine the noisy input with M(t−Th+1):(t) to assist the model
in identifying the missing positions of the historical input
data and get the combined input Xcomb ∈ R

Th×N×2. Finally,
we transform the combined input Xcomb to H (0)

(t−Th+1):(t) ∈
R

Th×N×D through two fully-connected layers to combine
the historical traffic information and the observation location
information as follows:

H (0)
(t−Th+1):(t) = FCs (Xcomb)

= FCs
�[Xm + η] ⊕ M(t−Th+1):(t)

	
, (5)

where ⊕ denotes the concatenate operation. Next, H (0)
(t−Th+1):(t)

is passed to the encoder module to extract the dense represen-
tation. The encoder module consists of a forward ST-Block
and a backward ST-Block stacked L layers of ST-Blocks.
Their structures and input are the same but with different
data processing directions. The forward ST-Block processes
the H (0)

(t−Th+1):(t) from step (t − Th +1) to t , and the backward
ST-Block processes from step t to (t − Th + 1). Fig. 4 demon-
strates L layers of ST-Blocks that extract spatio-temporal
dependencies. For the input H (0)

(t) of time step t , the proposed
model extracts the hidden spatio-temporal representation by L
layers of ST-Blocks. Then, features of different time steps are
aggregated by updating the hidden state of the GRU module in
ST-Blocks step by step. Taking the l-th ST-Block in forward
ST-Block and time step t as an example, h(l)

(t−1) is the hidden
state of the GRU module in l-th ST-Block from the previous

Fig. 4. Diagram of L layers of ST-Blocks.

time step. And the input data H (l−1)
(t) is processed based on

the following propagation rule:
H (l)

(t) = STB



H (l−1)
(t) , h(l)

(t−1)

�
, (6)

where H (l)
(t) is the output of l-th ST-Block, which is the same

as the updated h(l)
(t) and will be proposed to the next layer of

ST-Block.
The last hidden state h f in the forward ST-Block and hb in

the backward ST-Block are combined and transformed to hdec
through a fully-connected layer to combine features from two
directions and keep the feature dimension of hdec consistent
with h f and hb. The resulting hdec is subsequently passed to
the decoder module.

Different from the aforementioned encoder, the decoder
only contains the forward ST-Blocks to generate the output
auto-regressively as follows:

X̂(t) = Dec



h(t−1), X̃(t−1)

�
, (7)

where X̂(t) is the estimated traffic speed of time step t .
Next, by filling the missing values in X(t) with corresponding
values in X̂(t), we can get the imputed traffic speed X̃(t) =
M(t) � X(t) + (1 − M(t)) � X̂(t), and � denotes elementwise
multiplication. To initialize the decoder, we set the h(0) = hdec

and X̃(0) = 0. Finally, the output of the decoder X̃(t−Th+1):(t) ∈
R

Th×N , which denotes the imputed traffic speed, has the same
data shape as the input data X(t−Th+1):(t).

Regarding the purpose of this model, namely, extracting the
dense representation of input data with missing values and
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reconstructing the data X(t−Th+1):(t), the model is trained by
minimizing the following reconstruction loss:

L(θ, ϑ)=
Th�

i=1

||(X(t−Th+i)− X̃(t−Th+i)) � (1 − M(t−Th+i))||2,

(8)

where θ and ϑ are the parameters of the encoder and decoder,
respectively. For the training process of the model, it needs
to adjust the parameters, so that given the input, the model
can generate an output that is the same as the label or as
close as possible. Because the loss function L(θ, ϑ) represents
the difference between the model output X̃(t−Th+i) and label
X(t−Th+i), for one layer of the model, we can update the
weights by computing the partial derivative of L(θ, ϑ) with
respect to each weight. This updating process can be executed
sequentially from the top layer to the bottom layer so that the
output of the model is getting increasingly closer to the label.
See [44] for more detailed information.

2) Traffic Speed Prediction: After the model is capable of
handling data imputation, we may conclude that the compris-
ing encoder module can extract the dense representation from
input data, thereby benefiting the traffic prediction training
process. As a result, we connect this pre-trained encoder to
a new decoder module with the same structure and train the
new combined model on the traffic prediction task.

In this process, we still employ the same noisy traffic data
X(t−Th+1):(t) + η as the input, making the output to be the
traffic speed of the next Tp time steps X̂(t+1):(t+Tp). In order
to minimize the difference between the predicted traffic speed
X̂(t+1):(t+Tp) and the observation X(t+1):(t+Tp), we train the
model with the following mean squared error loss:

L(δ) =
Tp�

i=1

||X(t+i) − X̂(t+i)||2, (9)

where δ is the set of training parameters in the new decoder.

B. Spatio-Temporal Block

Fig. 3 shows the overview of ST-Block, which consists of
a GCN layer and a GRU one. Taking the forward ST-Block
in the encoder module as an example, at time step t , H (0)

(t) ∈
R

N×D is the input, where N is the number of sensor nodes,
and D is the hidden feature dimension. Through the process
of extracting the correlated spatio-temporal dependencies, the
output of ST-Block H (l)

(t) is generated. Additionally, in order to
prevent the over-smooth issues, we apply a residual connection
at the end of ST-Block. For each ST-Block, we ensure that the
input and output data dimensions are identical to allow the
residual connection operation. In the following, we introduce
the GCN and GRU modules, respectively.

1) Graph Convolution Layer: Traffic data contain complex
spatial correlation because the traffic state of a road section is
affected by adjacent sections. Traditional CNN can capture the
spatial dependency through a small kernel, which constrains
the operation range and provides the weight of information
aggregation. It performs convolution operations in Euclidean
space. However, such a uniform shape is not suitable for

graph structures due to their irregularity, e.g., the number of
adjacent sections is different for each road section. To perform
the convolution operation in the non-Euclidean space, GCN
is proposed to capture the complex spatial dependencies in
the graph data. Kipf and Welling [45] proposed the first-order
approximation of Chebyshev spectral filter [46]. Let the road
sections be the nodes in the traffic network G. For each road
section, its adjacent sections denote neighbors. GCN model
learns node embedding through aggregating information from
neighbors based on the traffic network structure. Given the
input data X ∈ R

N×D , where N and D denote the number
of nodes and the feature dimension, respectively, the output
YG ∈ R

N×D is produced based on the following propagation
rule:

YG = σ



D̃− 1
2 ÃD̃− 1

2 XW
�

, (10)

where Ã ∈ R
N×N is the weight adjacent matrix with self-

connection, and D̃ is the degree matrix of Ã, and D̃ii =

j Ãi j . W ∈ R

D×D is the parameter matrix of the GCN
module. σ(·) denotes the nonlinear activation function, which
is set to ReLU by default in GSTAE. For the GCN module
in the l-th layer of ST-Block, the input of time step t
is H (l−1)

(t) .
However, the widely recognized geography-defined adjacent

matrix cannot contain the complete spatial dependency cor-
relation. For instance, two nodes have similar traffic states
but are far away from each other. Even though we can stack
and construct a deep GCN model to make them aggregate
information from each, too many layers of GCN can lead to
node embedding indistinguishable and over-smooth problems.
In addition, this approach cannot be applied to other problems
without the knowledge of graph structure. Recent studies
have resolved this issue by applying a self-adaptive adjacent
matrix and achieving state-of-the-art performance [27], [47].
Following the design principle, we utilize a self-adaptive
adjacent matrix Ãadp defined as follows:

Ãadp = SoftMax



ReLU(E1 × ET
2 )

�
, (11)

where E1, ET
2 ∈ R

N×C are learnable parameters which are
initialized randomly before the training process.

Since both the geography-defined and the self-adaptive
adjacent matrix are essential for extracting geographic and
hidden spatial dependencies in traffic data, we combine
the geography-defined normalized adjacent matrix Adef =
D̃− 1

2 ÃD̃− 1
2 , which represents the relationship between dif-

ferent nodes, and the self-adaptive matrix Ãadp. Through the
combination of Adef and Ãadp, the GCN module can extract
more complete spatial correlation information and achieve
better performance than only using Adef. Besides, during
the training process, the geography-defined traffic network
ensures the GCN operation can extract spatial dependency
and stabilizes the training process before the model learns
the correct and sufficient hidden spatial information. And the
graph convolution process can be expressed as:

YG = σ



Adef XWdef + Ãadp XWadp

�
. (12)
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In summary, we can make each node gather information
from not only its first-order neighbors but also other correlated
nodes through one layer of GCN. Besides, the process in
which traffic conditions influence each other will not terminate
after one-hop propagation, which indicates that only using one
layer of the GCN module is insufficient to extract the spatial
correlations [48]. This issue can be solved by stacking GCN
layers to extend the aggregation. However, stacking too many
GCN layers may bring a massive computational burden and
lead to “over-smooth” issues [49]. Thus, in order to expand
the coverage of information gathering and prevent the over-
smoothing issue, we use three layers of ST-Block to extract
the complex spatial correlation in traffic data [50].

2) Gated Recurrent Unit: After extracting spatial features
by GCN layers, we apply recurrent layers to learn the temporal
characteristics in traffic data. The RNNs are effective tools
to process the sequence data and model temporal depen-
dency. However, RNNs have limitations in processing the
long sequence data because of the gradient vanishing and
explosion problem. In ST-Block, we leverage GRU [13] to
learn the temporal dependency, which is a simple and effective
variant of RNNs. GRU introduces the concept of gate units that
control the flow of information to solve gradient problems,
and the structure of GRU is more simple than LSTM [12]
relatively. Specifically, the gate units consist of two types,
namely, reset gate and update gate, to control how much state
information of previous time steps can be remembered and
passed to the current time step:

u(t) = σ(Wz [X (t), h(t−1)] + bu),

r (t) = σ(Wr [X (t), h(t−1)] + br ),

c(t) = tanh(W [X (t), r (t) � h(t−1)] + bc),

h(t) = u(t) � h(t−1) + (1 − u(t)) � c(t), (13)

where h(t) is the hidden state at time t , X (t) is the input feature
of step t , r (t) is the reset gate, and u(t) is the update gate,
respectively. Because the GCN and GRU modules are stacked
consecutive, the input of GRU X (t) = YG is the output of the
GCN module. By sequentially incorporating traffic data into
the model, GRU is capable of capturing the dynamic temporal
dependency inherent in traffic time series.

C. Training and Inference

Since GSTAE is proposed to handle two sub-tasks, namely,
imputation and prediction, the typical end-to-end training
scheme is not suitable for GSTAE. Moreover, due to the
complexity of the imputation and prediction tasks being quite
different, the common multi-task training strategy, such as
training together by computing the loss function for all sub-
tasks, is also not suitable for GSTAE. We treat the prediction
task as the main task and the imputation task as the auxiliary
task to solve these issues and train the model through a
two-stage training paradigm. First, the imputation task is
trained to enable the encoder module of GSTAE to extract
dense representations from the original data with missing
values. After the imputation training process, the GSTAE
model is trained with the traffic prediction task.

Training scheme:

1) Initialize the model parameters θ , ϑ , and the training
dataset of the imputation task. Input is traffic speed
data with missing values X � M , and the label is the
corresponding completed traffic speed data X .

2) Use the Adam optimization algorithm [51] to update the
model parameters θ and ϑ based on the loss function
L(θ, ϑ).

3) Freeze the encoder module and connect with a new
decoder module whose parameters are δ. Initialize the
training dataset of the prediction task. Input is historical
traffic speed data with missing values X(t−Th+1):t �
M(t−Th+1):t , and the label is the traffic speed data of
the next Tp time steps X(t+1):(t+Tp).

4) Use the Adam optimization algorithm to update the
decoder parameters δ based on the loss function L(δ).

In summary, considering the complexity of the imputation
and prediction tasks being quite different, the imputation and
prediction tasks are trained sequentially instead of training
together. Besides, through the first training of the imputation
task, the encoder module can obtain a suitable parameter set
to extract the dense representation from input data. It can
speed up the training process of the subsequent prediction task,
which is much more complex than the imputation task.

V. CASE STUDIES

In this section, we comprehensively evaluate the perfor-
mance of the proposed GSTAE with two real-world datasets.
We first assess the efficacy of traffic prediction and imputa-
tion tasks under a variety of missing scenarios and compare
the proposed model with state-of-the-art approaches. Then,
we conduct a series of ablation tests to reveal the effectiveness
of GSTAE sub-modules. Finally, we analyze the sensitivity of
hyperparameters on the model performance.

A. Dataset and Configurations

All case studies are conducted on two real-world datasets:
PEMSD7 [40] and METR-LA [9]. PEMSD7 is a popular
traffic speed prediction dataset collected from Caltrans Perfor-
mance Measurement System (PeMS) by over 39 000 sensor
stations on highways in California, United States. We follow
the data processing method in [40] and adopt weekday traffic
data from May 1st, 2012 to June 30th, 2012. METR-LA
data was collected from 207 sensors along the Los Angeles
Freeway during weekdays between March 1st, 2012 and June
30th, 2012. These two datasets share the same sampling
interval of 5 min, i.e., each sensor generates 288 data points
per day. All missing data in the ground truth of these two
datasets are imputed by linear interpolation and are excluded
in the evaluation stage, following the common practice in
literature [7], [18], [40].

In this study, we investigate two missing patterns, as pre-
viously mentioned in Sec. III, and a wide missing rate range
from 20% to 80% with 20% as the interval. For each sample,
the missing values are masked according to the specific
missing pattern. For cross-validation, each dataset is grouped
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into non-overlapping training, validation, and testing subsets
with 60%, 20%, and 20% of the complete dataset, respectively.

All case studies are conducted on an Intel Xeon E5 CPU
and an nVidia GTX 2080 Ti GPU. The proposed model
and all baselines use the historical traffic speed of the past
Th = 12 time steps (60 min) to predict that of Tp = 3, 6, 12
time steps (15, 30, 60 min) ahead. For NRM, we set the
length of mask block l = 4 as introduced in Sec. III-C.
Unless otherwise specified, the number of ST-Block layers in
each recurrent sub-modules is set to L = 3, and the output
dimension of each ST-Block is set to D = 64. For the fully-
connected layers that process the input data and generate the
output, the hidden dimension is set to K = 256. The proposed
GSTAE is trained with the efficient stochastic optimization
method Adam, which updates the model parameter based on
the first-order gradients with the weight decay of 0.7 for every
five epochs. The maximum epoch is 200, the initial learning
rate is 0.001, and the batch size is 32. To avoid the overfitting
problem, we apply the early stopping in the training process
and set the patience to 10.

To evaluate the prediction performance, we employ Root
Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Mean Absolute Percentage Error (MAPE) as evaluation
metrics, which are defined as follows:

RMSE =
����1

n

n�
i=1

(Xi − X̂i )2,

MAE = 1

n

n�
i=1

���Xi − X̂i

��� ,
MAPE = 1

n

n�
i=1

����� Xi − X̂i

Xi

����� × 100%, (14)

where Xi is the real traffic speed at time step i , and X̂i is the
predicted speed at time step i , respectively.

B. Prediction Accuracy

We first compare the prediction accuracy of the proposed
GSTAE with baselines. A common practice for traffic pre-
dicting with missing data is to impute incomplete data with
an external imputation model and then feed the imputed data
into prediction models [17], [21]. Thus, we combine state-of-
the-art traffic imputation and prediction methods to develop
baselines of the typical two-phase traffic predictors. For the
imputation methods, we adopt

• Bidirectional Recurrent Imputation for Time Series
(BRITS) [29]: BRITS is a general imputation model for
time series data. It utilizes the bidirectional recurrent net-
work for time series modeling. To get better imputation
performance, we set the dimension of the RNN hidden
state to 64 based on offline preliminary experiments.

• Bayesian temporal matrix factorization (BTMF) [22]:
BTMF employs the matrix factorization method with
Bayesian inference to capture the temporal dependency
and has remarkable performance compared to other impu-
tation methods based on tensor decomposition.

• BTMF (50) [22]: To get better imputation accuracy,
we set the matrix rank to 50 in BTMF based on prelim-
inary experiments against the default 10 as used above.

For the traffic prediction models, we employ

• Diffusion Convolutional Recurrent Neural Network
(DCRNN) [9]: DCRNN embeds the graph by bidirec-
tional random walks and applies gated recurrent units into
an encoder-decoder model to capture the spatio-temporal
dependencies.

• ASTGCN [18]: ASTGCN introduces the spatial and
temporal attention mechanisms to extract the dynamic
spatio-temporal dependencies and considers the historical
data with a more extended range (e.g., historical traffic
data one day ago, one week ago).

• Graph Multi-Attention Network (GMAN) [28]: GMAN
utilizes a new spatio-temporal attention mechanism which
is calculated through input data and pre-defined spatio-
temporal embedding information to extract the complex
spatio-temporal correlations.

• Fully Connected Gated Graph Architecture (FC-GAGA)
[52]: FC-GAGA builds the hard graph gate mecha-
nism to extract spatial dependency without requiring the
geographic-knowledge and extracts temporal dependency
through the time gate mechanism.

Furthermore, we also implement recent studies on traffic
prediction with missing values based on the introductions and
configurations from their original proposals.

• Graph Convolutional Bidirectional Recurrent Neural Net-
work (GCBRNN) [16]: GCBRNN combines the GCN
and GRU modules to build the graph convolutional gated
recurrent bidirectional unit, which imputes historical data
and make prediction consecutively.

• Recurrent Imputation based Heterogeneous Graph Con-
volution Network (RIHGCN) [17]: RIHGCN utilizes het-
erogeneous graph structure and LSTM to extract dynamic
spatio-temporal correlations.

Table I and II summarize the simulation results on the
PEMSD7 and METR-LA datasets respectively. Generally, the
proposed GSTAE outperforms all baselines in most missing
scenarios and prediction lengths. Especially for the NRM
missing type, a more complex missing type than RM, GSTAE
is better than other baseline models for all missing rates. This
is because the bidirectional ST-Block proposed in GSTAE
can extract the dynamic temporal correlation in the traffic
data. At the same time, the GCN model in the ST-Block
module can capture the complex spatial correlation, and the
introduced adaptive adjacency matrix can also learn the hid-
den spatial information outside the network topological map.
Furthermore, the two-step training method used in the training
process ensures that the encoder module can extract enough
spatio-temporal information to process downstream tasks and
alleviates the error accumulation issues.

For RM missing, there are three cases where the proposed
GSTAE slightly underperforms the baseline models based on
ASTGCN or GMAN. This is because that ASTGCN has a
broader receptive field. It can obtain important information
from historical data one day and one week before. At the
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TABLE I

PERFORMANCE COMPARISON WITH DIFFERENT PREDICTION LENGTHS (15 min / 30 min / 60 min) ON PEMSD7 DATASET WITH MAPE. MAPE IS
REPORTED IN PERCENTAGE (%)

same time, the multi-layer attention mechanism introduced by
GMAN performs well in extracting spatio-temporal correla-
tions from traffic data and making predictions. Nevertheless,
the proposed GSTAE achieves superior results to all baselines
in most missing scenarios and prediction lengths. Although
there are two scenarios where the proposed GSTAE performs
worse than GMAN or ASTGCN, the performance gap is
negligible. In general, the proposed GSTAE is more capable
of extracting complex spatio-temporal correlation informa-
tion from historical traffic data with missing values and has
more obvious advantages in long-term traffic speed prediction
tasks.

For all missing scenarios and prediction lengths, using
FC-GAGA as the prediction model has clearly overfits. One
possible reason is that the missing data makes the feature
difference between nodes negligible, complicating the hard
graph gate mechanism to learn spatial dependencies. Com-
pared with combinations of imputation and prediction methods
(e.g., ASTGCN-based and GMAN-based ones), the GCBRNN
and RIHGCN, which focus on traffic prediction with missing
values, have lower accuracy. This is due to the fact that these
methods merely integrate the imputation and prediction task

without designing a suitable training method or loss function,
which complicates the optimization process of the model.

For the PEMSD7 dataset, when the missing type is RM, the
performance of DCRNN-based baseline models is the worst.
Only processing data in the forward direction based on the
encoder-decoder model makes the DCRNN most susceptible
to missing data. From the perspective of imputation methods,
the performance of the baseline models based on BTMF (50)
is generally better than that of the baseline models based on
BTMF. This is because increasing the model’s hyperparameter
(rank of the matrix) improves the model’s capabilities. The
baseline models based on BRITS have the best performance
when the missing rate is relatively small (from 20% to
60%), but the advantage over BTMF and variant is gradually
narrowing. When the missing type is NRM, there is no change
in the relative performance of each baseline model. However,
since NRM is a more complex type of missing data than RM,
all models’ absolute prediction performance observes a slight
decrease. On the METR-LA dataset, the performance rela-
tionship of different baseline models has changed compared
with the results on PEMSD7. BTMF (50) is better than that
of the baseline models based on BRITS for any missing rate.
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TABLE II

PERFORMANCE COMPARISON WITH DIFFERENT PREDICTION LENGTHS (15 min / 30 min / 60 min) ON METR-LA DATASET WITH MAPE. MAPE IS
REPORTED IN PERCENTAGE (%)

The baseline model BRITS+GMAN has obvious overfitting
problems.

C. Imputation Accuracy

In addition, we compare the imputation performance of the
proposed GSTAE with the imputation baselines mentioned in
the previous section. Table III shows the comparison result
on PEMSD7 and METR-LA datasets. Generally, the proposed
GSTAE outperforms other imputation baseline models. This
is because the GCN module in ST-Block and bidirectional
ST-Block structure benefits from mining spatio-temporal cor-
relations from traffic data with missing values. Compared to
BTMF, the performance of BTMF (50) is better. When the
missing rate is small (from 20% to 60%), the imputation
performance of BRITS is better than BTMF and BTMF (50).
When the missing rate is 80%, the performance of BRITS is
inferior to that of BTMF and BTMF (50). Because of the com-
plexity of the model optimization objective, the performance
of GCBRNN and RIHGCN is inferior to other baselines,
which only focus on the imputation task. From the perspective
of imputation performance changing trend, as the missing
rate increases, BRITS deteriorates rapidly, while the average
performance of BTMF-driven models declines slowly. This

is also consistent with the comparison results of the traffic
prediction task on the PEMSD7 dataset in Table I.

This is due to the different implementation principles of
different models. The BRITS imputes data based on a bidi-
rectional recurrent network, which means that BRITS can
only remember hidden features for a period of time. With the
missing rate increasing, the complexity of BRITS in extracting
spatio-temporal correlation information and imputing accurate
values will increase significantly. Compared with BRITS,
the proposed GSTAE is advantageous in processing traffic
data because of the proposed GCN module in ST-Block. For
the BTMF method, it performs matrix decomposition and
reconstruction of the entire data for each iteration. Therefore,
compared to BRITS, BTMF is easier to grasp the overall
characteristics of the data but more time-consuming.

In addition to simply comparing the performance of the
models on the imputation task, we also investigate the relation-
ship between imputation and prediction. If we only pay atten-
tion to the imputation and prediction results of the PEMSD7
dataset, we can easily conclude that the prediction results
obtained based on the data imputed by the well-performing
imputation model have to be accurate. This is also consistent
with our basic cognition.
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TABLE III

IMPUTATION PERFORMANCE OF DIFFERENT MISSING RATE WITH RM MISSING TYPE. (MAE / MAPE (%) / RMSE)

Fig. 5. Performance comparison of ablation models on PEMSD7 dataset for 60 min-ahead prediction with RM missing type.

However, when we pay attention to the prediction results of
the METR-LA dataset, we will find that it conflicts with the
conclusions we got before. When the missing rate is small,
since the imputation effect of BRITS is better, the prediction
performance of the baseline models based on BRITS should
also be better. However, we found that the performance of
baseline models based on BRITS is worse than the baseline
models based on BTMF (50). Therefore, we can conclude
that the prediction results obtained based on the data imputed
by the well-performing imputation model are not necessarily
good. In other words, we cannot simply splice an existing
model with the best imputation performance and another
model with the best prediction performance to assemble a new
model and subjectively think it can handle the traffic speed
prediction task with missing values.

D. Ablation Test

In this study, we conduct ablation tests to verify the contri-
bution of each GSTAE sub-module to the overall performance.
The following four variants of the GSTAE are investigated:

• No-adp: For graph convolution layers, the self-adaptive
adjacent matrix Ãadp is removed.

• No-GCN: For graph convolution layers, the self-adaptive
adjacent matrix Ãadp is removed and the widely
geography-defined matrix Adef is replaced with an iden-
tity matrix.

• No-GRU: The gated recurrent units is replaced with linear
layers.

• No-Res: The residual connections in the ST-Blocks is
removed.

For a fair comparison, all variants are trained with the same
setting as introduced in Sec. V-A. The simulations are con-
ducted on the PEMSD7 dataset for 60 min-ahead prediction
with RM missing type.

Fig. 5 shows the prediction performance comparison of
GSTAE with its variants. To summarize, the proposed GSTAE
has the best performance compared to the other variants over
all missing rates, demonstrating each sub-module’s contribu-
tion. Among the four variants, both GRU units and GCN layers
contribute the most to the accuracy, indicating that extracting
spatio-temporal relationships plays a crucial role in the traffic
prediction task. Besides, thanks to the aid of the self-adaptive
adjacency matrix, the model can learn additional spatial depen-
dence and further enhance its performance. Lastly, residual
connections in ST-blocks have the most negligible impact
on the accuracy since residual connections are designed to
reduce computational costs in training and prevent the model
from overfitting. Compared to the No-Res model, the average
computation time per epoch of the proposed GSTAE model
decreases from 49.71 s to 43.84 s.

Furthermore, through the two-stage training paradigm, the
proposed GSTAE can achieve a faster training process and
convergence than training the prediction task directly (e.g.,
the average training time per epoch decreases from 92.65 s
to 43.84 s, and the average number of training iterations
required for GSTAE to converge decreases from 102 to 40).
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Fig. 6. Performance comparison of different hyperparameters on PEMSD7 dataset for 60 min-ahead prediction with RM missing type.

This is because the pre-trained encoder module can extract
dense representation from traffic data through the previous
imputation training process, which subsequently accelerates
the subsequent prediction training process.

E. Hyperparameter Test

The hyperparameters of the proposed GSTAE are empir-
ically set, since they are critical to the model performance.
In this section, we investigate the sensitivity and influence
of three important hyperparameters, i.e., the dimension of
ST-Block D, the number of stacked ST-Blocks L, and the
hidden dimension of the fully connected layers K . Specifi-
cally, these hyperparameters are set to D ∈ {16, 32, 64, 128},
L ∈ {1, 2, 3, 4}, and K ∈ {64, 128, 256, 512} for evaluation,
respectively. Additionally, all the simulations are conducted
with RM missing type and 60 min-ahead prediction on the
PEMSD7 dataset.

As shown in Fig. 6, we have the following observations.
First, three hyperparameters generally show the same trend:
increasing the values improves prediction accuracy. The reason
is that enlarging model parameters can improve the learning
capacity of latent features (e.g., D increases from 16 to 64).
However, overly large model parameters may lead to overfit-
ting and result in performance degradation (e.g., D increases
from 64 to 128). Taking the number of stacked ST-Blocks L as
an example, stacking ST-Blocks deepens each recurrent sub-
module with GCN, which means that the range of information
obtained by each node based on the network topology is
enlarged. As a result, each node can aggregate more informa-
tion, and the model accordingly makes more accurate speed
predictions. However, if too many GCN modules are stacked,
it increases the difficulty for each node to distinguish the
importance of various neighbor nodes (e.g., which nodes
are closer to itself and which are far away). Furthermore,
the excessive GCNs offset the critical function of the GCN
module in extracting local information. Second, D has the
most significant impact on prediction accuracy among the
three hyperparameters, with MAPE fluctuating from approx.
11% to approx. 8%. This is consistent with the ablation results
in Sec. V-D that GCN layers and GRUs in ST-Blocks have a
more significant impact on prediction accuracy.

VI. CONCLUSION

In this paper, we propose a new multi-task learning deep
neural network model GSTAE that follows an encoder-decoder

structure to handle the task of traffic speed prediction with
missing values and eliminate the error accumulation issues
during the imputation and prediction process. Specifically, the
model consists of multiple ST-Block modules that combine
GCN layer with an adaptive adjacency matrix for spatial
modeling and GRU unit for temporal learning. We treat the
imputation and prediction as two parallel tasks rather than
standalone and consecutive tasks so as to eliminate the error
accumulation issue from performing imputation and prediction
sequentially. Additionally, we design a two-stage training para-
digm to accelerate the prediction training process and improve
performance. Concretely, the imputation task is trained first to
make the encoder extract dense representation from the input
with missing values. We subsequently train the task of traffic
speed prediction with missing values based on the pre-trained
encoder.

To evaluate the performance of the proposed GSTAE,
we conduct comprehensive experiments on two real-world traf-
fic datasets with various missing scenarios, i.e., two different
missing patterns and a wide missing rate range from 20% to
80%. Compared to the state-of-the-art traffic prediction with
missing values methods, the proposed model shows superiority
and stable performance. In addition, the proposed GSTAE also
shows the state-of-the-art performance on imputation task as a
side effect. Simulation results on the imputation task show that
an accurate imputation result does not necessarily positively
impact prediction, which falsifies the common assumption in
the literature.

Through the two-stage training paradigm, the proposed
multi-task learning deep neural network model GSTAE
achieves superiority and stable performance on both sub-tasks,
namely, traffic data imputation and traffic prediction with
missing values. However, since GRU modules process data
iteratively and can not be parallelized, a great computational
effort is needed when adopting the proposed model on large-
scale datasets and predicting long-term traffic speed. In the
future, we will accelerate the training process by improving
the model structure using modules like CNN and Temporal
Convolution layer (TCN). Besides, long-term traffic prediction
with missing values is also a direction worth studying.
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