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Abstract— Statistics on urban traffic speed flows are essen-
tial for thoughtful city planning. Recently, data-driven traffic
prediction methods have become the state-of-the-art for a wide
range of traffic forecasting tasks. However, many small cities
have a limited amount of traffic data available for building
data-driven models due to lack of data collection methods.
With the acceleration of urbanization, the need for traffic
construction of small and medium-sized cities is imminent. To
tackle the above problems, we propose a TransfEr 1Earning
approach with graPh nEural nEtworks (TEEPEE) for traffic
prediction that can forecast the traffic speed in data-scarce areas
with massive value data from developed cities. In particular,
TEEPEE uses graph clustering to divide the traffic network
map into multiple sub-graphs. Graph clustering captures more
spatial information in the transfer process. To evaluate the
effectiveness of TEEPEE, we conduct experiments on two real-
world datasets and compare them with other baseline models.
The results demonstrate that TEEPEE is among the best efforts
of baseline models. We provide a comprehensive analysis of the
experimental results in this work.

I. INTRODUCTION

Rapid urbanization development has modernized people’s
lives. However, it also brings significant problems to modern
cities, such as traffic congestion, environmental pollution,
and exhausting land usage [1]. The proliferation of big data
and the rapid development of computing power offer the pos-
sibility of using data science and computation technology to
solve these problems. Urban computing aims to build smart
cities by using massive data created in cities. Although data-
driven urban computing has emerged due to the proliferation
of data, there are still many cities that lack data. This problem
of data scarcity can be mainly attributed to the high cost
for constructing a comprehensive system of city-wide traffic
sensors and the requirement of considerable time to collect
data [2]. One available approach is to use inter-city transfer
learning to help cities that lack data develop their smart
systems.

The concept of inter-city transfer learning is proposed
in [3]. The data usage in inter-city transfer learning can
be divided into three strategies [4]. The first is “Cross-
City” which learns knowledge to city with sufficient data,
and transfer this knowledge to city with insufficient data.
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This way has developed good results in tasks such as air
quality prediction [3], ridesharing detection [5], and chain
shop site recommendation [6], etc. The second is “Cross-
Modality” which uses the different types of data in the city
such as weather, daytime, and social check-in information.
For instance, the popularity of social network check-ins may
be an indicator of the density of physical crowd flow in [7].
And the last is “Combining Cross-Modality and Cross-City
Transfer” which includes both above strategies to transfer
knowledge.

The task of traffic speed prediction is a challenge for the
construction of smart city systems. Autoregressive Integrated
Moving Average (ARIMA) and Historical Average (HA) are
the traditional methods for speed prediction but they are
limited on non-stationary sequence. Although data-driven
models can make better use of big data than ARIMA
and HA, this task also faces the same problem of data
scarcity in cities. In previous work, despite there has been
researched work on the spatio-temporal forecasting tasks
with the transfer method, there is a gap in traffic speed
prediction. The first related research [2] is only compared
with the traditional method Autoregressive Integrated Mov-
ing Average (ARIMA) and Historical Average (HA). To
further demonstrate the effectiveness of transfer learning in
few-data traffic forecasting, we propose TEEPEE. The main
contributions of this work are as follows.

e We propose a TransfEr 1Earning approach with graPh
nEural nEtworks (TEEPEE) for traffic prediction.
TEEPEE is able to provide traffic forecasts for cities
with sparse data by learning from the sufficient data of
other cities.

e We have adopted a graph clustering approach in
TEEPEE to capture spatial information in the traffic
road networks. TEEPEE divides the collected data into
sub-graphs based on spatial attributes and combine them
with a Graph Convolutional Network (GCN). Then, the
model trained with source data collected in data-rich
cities is applied to cities with fewer data.

e We provide a comprehensive experiments on two
real-world datasets and compare the performance of
TEEPEE with other baseline models. The experimental
results demonstrate that TEEPEE’s effectiveness in im-
proving traffic prediction accuracy in small cities with
insufficient data.

The rest of this paper is organized as follows. Section II
presents the related work on traffic speed prediction. The
definition of the problem is presented in Section III. Section
IV presents the main techniques used in TEEPEE. Besides,



we also introduce the main structure of TEEPEE in this
section. In Section V, we conduct several experiments to
demonstrate the effectiveness of TEEPEE. Finally, Section
VI concludes this work.

II. RELATED WORK

In this section, we review the previous work in traffic pre-
diction. We also introduce representative efforts on transfer
learning in cross-city prediction tasks.

A. Traffic speed prediction

Previous work on this topic can be broadly divided into
two main categories [8]: classical statistical methods and
machine learning models (especially deep learning). At the
early stage, statistical methods are used to study traffic
systems. However, the ability of these models to process
highly complex non-linear time-series data is quite limited.
With the increasing range and diversity of traffic data, data-
driven traffic prediction methods are shown to be promising,
which outperforms traditional simulation-based methods.

Traditionally, spatio-temporal forecasting uses basic time-
series models such as Autoregressive Integrated Moving
Average (ARIMA) [9], Kalman filters and its variants, regres-
sion models with spatio-temporal regularisation, and Support
Vector Regression (SVR), etc. The machine learning methods
mentioned above have achieved good results in classification
and regression tasks using big data. However, the methods
need feature processing artificially. As the number of data
increases, some data-hungry deep learning models are grad-
ually starting to be used in traffic prediction tasks.

Deep learning methods can extract high-dimensional fea-
tures from massive data effectively. Data-driven deep learn-
ing traffic prediction models, such as Deep Belief Networks
(DBN) [10] and Stacked AutoEncoders (SAE) [11], have
shown their superior performance on traffic flow predic-
tion (traffic forcasting tasks). Recently, Recurrent Neural
Networks (RNN) have been widely adopted in time se-
quence forecasting tasks for their performance on temporal
dependency modeling. With such models, [12] formulates
the temporal dependency for traffic prediction tasks. On the
other hand, a traffic network is a structure with high spatial
correlation. Hence, to model the complex spatial depen-
dency of traffic networks is of critical importance for traffic
prediction models as well. Convolutional Neural Networks
(CNN) that capture spatial relationship is therefore applied in
traffic problems; see [13], [14] for some examples. However,
traffic data, unlike images, are non-Euclidean. Consequently,
CNN may not be a good predictor of traffic data. More
recently, researchers have started to extend the convolution
operator to the more general graph structures [15]. Compared
to the grid structure, graph structure better resembles the
topology of traffic network. Moreover, representing traffic
networks as graphs allow models to capture fine-grained
spatial dependency in traffic networks.

B. Transfer learning

Although deep learning is developed due to the cities’
data proliferation, there are still cities with insufficient data.

Therefore, transfer models are proposed to solve data scarcity
problems. The work [3] propose the model “FLORAL” —
an inter-city transfer model to alleviate the data deficit in
small cities. FLORAL is defined as a flexible multimodal
transfer learning method that can transfer knowledge from
cities with enough model data and labels to cities where
labels are scarce. [16] proposes RegionTrans which explores
the possibility of spatio-temporal transfer across cities. Xu
[17] and Lin [2] use SVM and dynamic time wrapping in
cross-city speed prediction, respectively. [18] proposed TL-
DCRNN - a speed prediction method with transfer learning.
[19] proposes a potential information transfer mechanism
for online urban traffic speed estimation with little historical
data.

In this work, we propose TransfEr lEarning approach
with graPh nEural nEtworks (TEEPEE), a model for traffic
prediction that can forecast the traffic speed in data-scarce
cities with massive value data from data-rich cities.

III. PROBLEM DEFINITION

The problem of using transferable knowledge to predict
traffic speed is defined as follows. Let S represent a Source
city with abundant data, and 7" represents a Target city with
little or even no data. G5 = (V¥ ES A%) is a weighted
graph of the source city’s traffic road network, where V*°
is the set of N° nodes in the city’s road network. E° is
the set of directed edges connecting these nodes, and A° =
{A7} e BY *XN® is an adjacency matrix representing the
connectivity between nodes in the traffic road network. If
there exists a connection from nodes N; to IN;, but not from
N; to N;, then Afj =1, Afi =0.

The traffic state of the source city at time step ¢ can be
represented as a graph state X7 € RV°*F where F is the
number of traffic features we interested in. In this paper, we
only focus on the speed, i.e., I’ equals 1. Given H historical
traffic states X = (X7, X7, .., X)) € REXN®XF o
train a model for predicting the next () time steps’ traffic
state on the source graph.

GT = (VT,ET A7) is the graph with N7 nodes that
represents the target city’s road network with limited data.
The meaning of VT, ET AT is the same as the V°, E°, A®
in the source city but now for the target city. Given H current
traffic states X7 = (X}, X7, ..., X[ ) € RHXN"XF on the
graph GT, these states are used as inputs to trained model
mentioned earlier. The outputs are the next () time steps’

T
states Y = (Xg;{Jrl,Xg;Hl,...,Xg;HQ) € RN xF Note
that, the number of nodes in the source and target city’s graph
are not the same, i.e., N° # NT.

IV. PROPOSED METHODOLOGY

In this section, we describe the methods we use in
TEEPEE: graph partitioning and spatial dependency mod-
eling. We introduce the framework of TEEPEE at the end of
this section.



A. Graph Partitioning

There are several graph partitioning methods that can
be used to partition the graph during the training period.
Usually, these methods cannot divide the graph into exactly
equal-size sub-graphs, but they can give partitions of similar
sizes. In this paper, we take the k-way graph partitioning
method of Metis [20] and partition the traffic graph of our
target city into M7 similarly sized sub-graphs. In the case
that the number of nodes can not be divided by M T the
0-completion method in [18] can be used. In addition, an
example of how to represent a city’s road graph is shown in
Fig. 1. There are two traffic roads, a two-way road, and a
one-way road. The segments of each road are labeled from
1 to 5, and they are defined as the nodes of the graph. For
node 1 (road segment 1), there is no node connecting to it
directly. For node 2 (road segment 2), there are two nodes,
i.e., 3 and 4, connecting to it. Therefore, there are edges (3,
2), (4, 2), respectively, and Aszo = Ay = A5 = 1.

Fig. 1. Graph representation of road network
However, since the Metis method requires symmetric ad-
jacency matrices, we use a simple symmetrization method on
the adjacency matrices when performing graph partitioning
as follows:
* 7 0  otherwise.

B. Spatial Dependency Model

(D

GCN is effective to build the spatial dependency in traffic
networks. It overcomes the disadvantage of CNN that is
only deal with euclidean spatial data (i.e., images and grids
[21]). As graph structure better reflects the topology of traffic
network, GCN can capture fine-grained spatial features for
traffic network.

The essential goal of GCN is to extract the spatial features
of traffic networks. A common solution is to adopt the
spectral graph convolution, which is based on the theory
of spectral graphs and uses spectral clustering to construct
filters in the Fourier domain to investigate the properties
of the graph by means of the eigenvalues and eigenvectors
of the graph’s Laplace matrix [22]. The Laplace matrix is
symmetric. And the matrix has non-zero elements only at
the vertices themselves and at their 1-hop neighbors. These
advantages make the convolution process simpler. Therefore,
GCN is popular in many areas.

We first compute the graph Laplacian matrix with the
adjacency matrix.

L=D"2ADz, 2)

where A = A+ Iy is the adjacency matrix with added self-
connections, Iy is the identity matrix, D = diag (> j Aij)
is the diagonal degree matrix.

For each convolutional layer,

HMHYD = o(LHVWD), (3)

where [ is the layer number. H") stands for the output of the
I-th layers. 8%) represents the I-th layer’s parameters. And
o(-) is the sigmoid function. Combined with Equation 3, the
output is calculated as follows,

f(X,A) = o(LReLU(LXWo)W1), @)

where f(X,A) is the output. X is the feature matrix. W)
stands for the weight matrix mapping input to the hidden
unit, and W7 represents the weight of the next layer. ReLU(-)
represents the Rectified Linear Unit [23]. In summary, we
use the GCN model to learn spatial information in traffic
netwroks.

C. Framework of TEEPEE

Although we have emphasized the importance of obtaining
spatial relationship for traffic data in the above, traffic speed
prediction is essentially a time series forecasting task. So,
the model which works on time series data is necessary.
In TEEPEE, we use Gate Recurrent Unit (GRU) to capture
temporal information. GRU is a variant of RNN. It alleviates
the disadvantages (i.e., gradient explosion and gradient van-
ishing) of RNN. And compared with another variant of RNN
(i.e., Long-Short Term Memory, LSTM), GRU has fewer
parameters and a simpler structure. We combine GCN and
GRU in the ST-block, which was mentioned later. TEEPEE’s
framework is shown in Fig. 2. There are several parts in
TEEPEE.
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Fig. 2. The framework of TEEPEE

1) Partition: First, we partition the target city’s traffic
road graph (G7) in M7 sub-graphs (GT1,GT2, .. .GT(M™)),
Then, we partition the source city’s traffic road graph (G*°)
into sub-graphs (G5, G52, ...GS(M®)) with similar sized as
target city’s sub-graphs.



2) Train process: In the training process, we com-
bine each sub-graph with the H historical traffic states
(X51/X52). /XS(M?)) on the sub-graph as one pair of
inputs for ST-block (mentioned later). The outputs of ST-
blocks are the next () time steps’ traffic states for each sub-
graph and concatenate them as prediction result of the whole
source city’s graph (G°). Then, we make a loss with the
ground-truth value.

3) Transfer process: When performing inter-city trans-
fer, we also combined each sub-graph of the target
city’s traffic road graph with the H current traffic states
(XT1/XT2/.../XT(M7)y as a pair of inputs. But in this
part, we use the ST-blocks trained by the source city’s data
directly. The next steps are the same as the training process.
Only at the end, we compute three metrics (mentioned in
Section V-C) with ground-truth value.

4) ST-block: ST-block is a spatio-temporal network that
combines GCNs and GRUs. Its inputs are H pairs of sub-
graph and traffic states. GCNs capture the spatial information
of each pair and feed them into GRUs. Then, GRUs capture
the temporal information of these pairs. The output is the
next () time steps’ traffic states on one sub-graph.

V. EXPERIMENT

In this section, we evaluate the performance of the pro-
posed model on two real-world datasets. In particular, we
employed two variants of the proposed TEEPEE to verify
the effectiveness of TEEPEE’s components.

a) TEEPEE: We use this original model to verify the
performance of the transfer learning so that the data of the
target city will not be used in the transfer directly.

b) TEEPEE retrain: TEEPEE_retrain is a variant
of TEEPEE. The difference between TEEPEE and
TEEPEE _retrain is that the input data in TEEPEE retrain
additionally includes a subset from the target city’s traffic
dataset besides the data from the source city. The subset
contains limited data (e.g., one day). In this case, we expect
TEEPEE _retrain’s performance approach to the prediction
results of having a large amount of data from the target city
for training.

Furthermore, we verify the performance of TEEPEE and
TEEPEE _retrain by comparing them with other baseline
models on the traffic speed forecasting task.

A. Experimental Settings

a) Experiment Environment: All experiments are con-
ducted on a Linux server with Intel E5-2620v4 CPU and
GeForce RTX 2080Ti CPU. All baselines and the proposed
TEEPEE are built with Pytorch 1.7.0 and Python 3.8.3.

b) Hyperparameter Settings: In accordance with the
previous works, we use H = 12 traffic conditions with a
short history (60 min) to predict future traffic conditions and
Q=3/6/9/12 (15 min /30 min / 45 min / 60 min). We
train our model with the Adam optimizer [24]. The initial
learning rate is set to 0.001. The batch size is 64. The training
epoch for all models is 500. And we set the number of the
hidden unit as 32. The number of sub-graphs into which the
target city is divided is 4.

B. Dataset Description

In this work, two real-world network-wide traffic speed
datasets are utilized.

a) Nav-BJ: This dataset consists of the average speed
of Beijing from March 1st to March 31st of 2019. There are
1159 nodes (road segments) of Beijing as the investigated
data. The experimental data contains two main matrices.
One is the 11591159 adjacency matrix, which describes
the spatial relationship between the nodes. Each value in the
matrix represents whether the node represented by the row is
connected to the node represented by the column. The other
is a feature matrix, where each row represents the speed of
all nodes in a traffic graph at a certain time. Each column
represents the speed at a node from the start time to the end.
The timestamp interval is set to five minutes.

b) Nav-SH: This dataset consists of the average speed
of Shanghai at the same time as Nav-BJ. There are 400 nodes
(road segments) of Shanghai for prediction. It also has two
matrices as Nav-BJ. The first is a 400 x400 adjacency matrix.
The next is the feature matrix as in Nav-BJ.

In this paper, through the cross-validation process, we
consider the dataset from Beijing as a large dataset (i.e.,
the source dataset in transfer learning). At the same time,
Shanghai is identified as the target city for knowledge
transfer. Its data is not used for training but only serves as
real-time input of TEEPEE. In TEEPEE _retrain, we use one
day’s subset of Nav-SH to retrain the parameters in TEEPEE.
We follow the previous deep learning research and map the
data with the range (0, 1) using a sigmoid activity function
after the Z-score normalization.

C. Evaluation Metrics

We choose three metrics to evaluate the performance of
models, including:

1) Mean Absolute Error (MAE):

1 & -
MAE = — ‘ Y, - 5
—~ ; ( ) 5)
2) Root Mean Squared Error (RMSE):
1 — .
RMSE = , | — Y; - Y;)2 6
~ ;( ) 6)
3) Mean Absolute Percentage Error (MAPE):
100% < |Y; — Y;
MAPE = 7
; ; v ™

Where Y, and 2 are ground truth and predicted speed,
respectively.

D. Baseline Models

We compare TEEPEE with two categories of methods:
non-transfer learning and transfer learning methods. For non-
transfer learning methods, we select the TGCN model [25],
which is among the state-of-the-art for traffic prediction.

1) Non-transfer learning:



TABLE I
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES FOR TRAFFIC PREDICTION ON SHANGHAI DATASETS.

method TGCN_L TGCN_S TEEPEE _direct TEEPEE TEEPEE _retrain
RMSE 7.96 9.75 18.98 9.83 8.88
15min MAE 5.79 7.22 13.38 7.31 6.57
MAPE 7.13 8.95 15.96 8.88 8.07
RMSE 8.12 9.47 18.42 10.18 8.99
30min MAE 591 7.04 13.26 7.65 6.64
MAPE 7.27 8.64 16.19 9.33 8.13
RMSE 8.21 9.75 18.33 10.29 9.31
45min MAE 5.98 7.26 13.06 7.71 6.89
MAPE 7.35 8.90 15.62 9.31 8.50
RMSE 8.29 9.95 19.23 10.31 9.33
60min MAE 6.06 7.43 13.81 7.73 6.92
MAPE 7.38 8.96 17.76 9.47 8.37
TABLE II
PERFORMANCE COMPARISON OF THE NUMBER OF CLUSTERS ON NAV-SH
MT 15min 30min 45min 60min
RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE
2 10.67 7.85 9.48 10.21 7.69 9.43 10.34 7.79 9.48 10.45 7.88 9.68
4 9.83 7.31 8.88 10.18 7.63 9.32 10.28 7.71 9.31 10.31 7.73 9.46
8 9.76 7.28 8.92 9.97 7.45 9.14 10.06 7.51 9.09 10.09 7.56 9.28
16 9.89 7.37 9.04 10.12 7.56 9.33 10.11 7.55 9.17 10.23 7.67 9.41

a) TGCN_L: The model uses a subset from the target
city’s traffic dataset (Nav-SH) as the training dataset. The
subset contains 20 days of data, and we consider that there
is a rich source of data that can be used to predict the traffic
speed in the next 15-60min.

b) TGCN_S: The model uses a small subset from the
target city’s traffic dataset (Nav-SH) as the training dataset.
Different from the TGCN_L, the subset contains one day of
data which is the same as in TEEPEE retrain. In this case,
we consider the subset is small to predict the traffic speed
in the next 15-60min difficultly.

2) Transfer learning:

a) TEEPEE direct: The model uses all data from the
source city (Nav-BJ) as a training set to make predictions
of the target city. Unlike TEEPEE, TEEPEE direct does not
use graph partitioning; the model is intended to demonstrate
the performance of partitioning.

E. Results

1) Forecasting Performance Comparison: Table 1 shows
a comparison of different methods for 15 min / 30 min / 45
min / 60 min ahead prediction on the Nav-SH. We observe
that:

e Compared to TGCN_S, TEEPEE without any data from
the target city is already comparable to the performance
of the TGCN_S with only a small amount of data, which
indicates that inter-city data transfer is possible.

o Compared to TGCN_L, TEEPEE _retrain’s performance
is slightly inferior but better than TEEPEE. The reason
for this is that TEEPEE _retrain uses a small subset from
the target city. This shows that our transfer method, with
only a small subset from target city data, can approach
the results of those who employ a large amount of data
for training. And it is superior to the results of a model

trained with only a small amount of data (TGCN_S).
This demonstrates the effectiveness of the transfer.

o Compared to TEEPEE direct, our method is able to
capture more information in the traffic network map
because of the graph partitioning, which improves the
metrics (MSE, MAE, MAPE) over the direct transfer
method.

2) Missing Data Tolerance: Traffic data is often collected
from sensors arranged on various roads. Due to the reasons
of weather and environment, etc., sensors may not generate
the correct readings. Additionally, there is a non-negligible
probability of packet loss and other problems during data
transmission. The data sent back by sensors is not always
complete. So it needs to concern about how prediction meth-
ods perform in the missing data. To evaluate the performance
of TEEPEE in the missing data, we set a random loss fraction
1 (percentage of missing data, range from 10% to 90%)
of the target dataset and produced corresponding input for
predicting the next hour’s traffic speed. As shown in Fig.
3, TEEPEE’s approach is more missing-tolerant, suggesting
that TEEPEE can capture complex and incomplete spatio-
temporal correlations from contaminated traffic data to adjust
the dependence between observations and future time steps.

3) Sensitivity of Clusters: In TEEPEE, the traffic network
in the target city is divided into several sub-graphs (i.e.,
clusters) with different sizes. The number of clusters may
influence the performance metrics. In this experiment, we
set the number of clusters as 2, 4, 8, and 16, respectively,
to see how it influences the metrics. In Table II, We can
observe that the best results are obtained using the setting
of MT =8. When M7 = 4 and MT = 6, the performance
is undermined, though not significant. However, when M”
equals 2, the performance is much inferior. This may be
due to the fact that the two cities do not have exactly
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Fig. 3. Performance of the model at different loss fractions

the same traffic network and data distribution. The aim of
transfer learning is to learn a similar graph and temporal
structure from the source city to the target city. After graph
partitioning, we consider that each sub-graph represents
a traffic structure (i.e., a fork in the road, roundabout).
These structures exist in each city. When the traffic graph
is too large, a graph may conclude a variety of different
traffic structures. The similarity between the two cities is
undermined. And the performance of transfer is inferior.
When we partition the graph in a suitable size that contains
one traffic structure or several similar structures, the spatial
and temporal information captured by the model can better
transfer to the target city.

VI. CONCLUSIONS

In this paper, we propose TransfEr 1Earning approach with
graPh nEural nEtworks (TEEPEE), a model for traffic speed
prediction with transfer learning. TEEPEE can provide traffic
forecasts for cities with scarce data by learning from the
sufficient data of other cities. In TEEPEE, we use graph
partitioning to obtain sub-graphs that contain similar traffic
structures of target cities from the source city. Then, we use
GCN to capture the spatial information on the sub-graphs and
GRU for temporal information for predicting traffic speed.
This transfer learning method fills a gap in traffic speed
prediction with deep learning in cities with limited data. The
experiments show that TEEPEE with no target city’s data
used is comparable to the model trained with limited data
(TGCNL.S). And when using the target city’s data, the model
(TEEPEE _retrain) can outperform TGCN_S and approach to
TGCN_L. In summary, TEEPEE is effective on few-data
traffic speed prediction with transfer learning.
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