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Abstract—Accurate identification in public travel modes is
an essential task in intelligent transportation systems. In re-
cent years, GPS-based identification is gradually replacing the
conventional survey-based information-gathering process due
to the more detailed and precise data on individual’s travel
patterns. Nonetheless, existing research suffers from deficient
feature selection, high data dimensionality, and data under-
utilization issues. In this work, we propose a novel travel mode
identification mechanism based on discrete wavelet transform and
recent developments of deep learning techniques. The proposed
mechanism aims to take GPS trajectories of arbitrary lengths
to develop accurate travel mode results in both global and
online identification scenarios. In this mechanism, raw GPS
data is first pre-processed to compute preliminary motion and
displacement attributes, which are input into a tailor-made deep
neural network. Discrete wavelet transform is also adopted to
further extract time-frequency domain characteristics of the
trajectories to assist the neural network in the classification
task. To evaluate the performance of the proposed mechanism,
a series of comprehensive case studies are conducted. The
results indicate that the mechanism can notably outperform
existing travel mode identifications on a same data set with
minuscule computation time. Furthermore, an architecture test
is performed to determine the best-performing structure for
the proposed mechanism. Lastly, we demonstrate the capability
of the mechanism in handling online identifications, and the
performance sensitivity of the selected attributes is evaluated.

Index Terms—Travel mode identification, GPS trajectory, dis-
crete wavelet transform, deep learning, feature selection.

I. INTRODUCTION

TRAVEL mode identification is among the fundamental
constituting components of intelligent transportation sys-

tem (ITS) in future smart cities [1], [2]. Accurate public
travel mode data is essential for governments, companies,
and research institutes to better understand human behaviors
and operate transportation systems [3]–[5]. Much research
effort has been devoted in developing advanced transportation
system control strategies based on the data, e.g., traffic signal
control [6], regional transportation planning [7], and policy
making [8], etc. Furthermore, travel mode identifications for
individuals can also facilitate tailor-made user experience of
mobile applications. For instance, travel mode information
plays an important role in constructing activity-based customer
models [3], which in turn can lead to personalized recommen-
dations and advertisements.
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The knowledge of travel mode choices was conventionally
obtained through in-person or online surveys. Nonetheless,
such methods are both time-consuming and ineffective due to
the low response rate and incomplete/inaccurate information
provided [9]. In the past few decades, global positioning
system (GPS) was widely adopted in civilian equipments and
smart devices. Traditional travel mode surveys were gradually
replaced by GPS data mining thanks to the more detailed
information on individual’s travel patterns over a prolonged
period of time [10]. In addition, the enormous penetration of
GPS-enabled devices in modern cities – most commonly smart
phones – makes it possible for system operators to capture
massive GPS trajectory data with minimal human-in-the-loop
data gathering errors than surveys [9].

Typically, GPS devices record the positional characteristics
of travels at a given interval, and multiple consecutive GPS
records by a same device can be connected to create a
GPS trajectory. In the meantime, GPS devices do not have
any explicit knowledge on which travel mode is currently
employed. This advocates research on data processing mech-
anisms which extract the hidden travel mode information
from raw GPS trajectories. Common travel mode identification
approaches adopt a two-step paradigm as in [11]. Firstly, each
GPS trajectory is input into a data processing module, which
subsequently outputs manually selected data attributes that
are considered to be able to summarize its characteristics,
e.g., mean and 95-percentile speed/acceleration values [3],
etc. Then the extracted attributes are fed into a classifier,
which is typically learning-based, to develop the inferred travel
mode. In this process, both the selection of data attributes and
implementations of the classifier are critical to the overall iden-
tification accuracy, and the research community is embracing
a plethora of new attributes and classifiers, see [3], [9], [11]–
[13] for some examples.

However, there remains a research gap in the current GPS-
based travel mode identification approaches. On the one hand,
careful investigation on how the GPS data attributes influence
the identification accuracy is essential to achieve satisfactory
system performance as introduced above. Nonetheless, the
manually chosen attributes may not fully represent all critical
characteristics of GPS trajectories in distinguishing travel
modes [11]. A recent solution to this issue is to increase the
number of data attributes extracted from one GPS trajectory
aiming at a thorough summary of the trajectory features, see
[3] for an example. Yet this approach adversely increases the
data dimensionality, resulting in a more difficult classifica-
tion task in the second step [9]. On the other hand, other
research exploits deep learning approaches to automatically
learn multiple levels of data representations from the raw
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trajectories without pre-defined attribute inputs. Such mech-
anisms are designed to only accept trajectories with a fixed
and significant length, see [9] for an example. In this case,
real-time travel mode identification is not possible without a
notable waiting time. Furthermore, the identification accuracy
may be undermined on trajectories that are longer than the
designed input length, since early but (potentially) useful GPS
records are discarded.

To close the research gap in existing travel mode iden-
tification approaches, we propose a novel intelligent travel
mode identification mechanism based on discrete wavelet
transform (DWT) and deep learning techniques. In the pro-
posed mechanism, a long short-term memory (LSTM)-based
deep neural network (DNN) is constructed to perform the
data attribute extraction and travel mode classification tasks
simultaneously. In addition, DWT is employed to provide
auxiliary data features for DNN to better distinguish different
modes thanks to its outstanding frequency-domain feature
extraction capability. The main contributions of this paper are
summarized as follows:
• We propose a new intelligent travel mode identification

mechanism that can provide accurate and timely travel
information. This paper is among the pioneer studies of
using wavelet transform and recurrent neural network in
travel mode identification.

• The proposed mechanism aims to take trajectories with
arbitrary and sufficient lengths1 to develop accurate re-
sults. It can be applied to global and online identifications.

• We conduct comprehensive case studies to assess the
performance of the proposed mechanism. The results
demonstrate satisfactory identification accuracy compared
with the literature.

• Investigations are carried out to study the best structure
of the proposed mechanism, and the sensitivity of data
attributes is examined.

The remainder of this paper is organized as follows. In
Section II, the background of travel mode identification re-
search is presented. Section III elaborates on the proposed
identification mechanism. We perform a series of case studies
in Section IV to demonstrate the efficacy of the proposed
mechanism. Finally, this paper is concluded in Section V with
a summary of potential future research topics.

II. BACKGROUND

Travel mode identification has attracted much research effort
in recent years. The growing body of related literature has
proposed a large number of mechanisms to detect commuters’
transport modes online or offline based on various data
sources, e.g., raw GPS trajectories, geographic information
system, mobile phone sensors, and global system for mo-
bile communications (GSM). Additionally, a wide range of
methodologies have been applied to address the identification
task, including but not limited to rule-based algorithms, fuzzy
logic, decision tree and its variants, Bayesian belief network,
support vector machine, and neural networks, etc. As this

1As will be illustrated in Section IV-C, the minimal length requirement is
reasonable even in real-time identification scenarios.

research aims to identify travel mode with only GPS trajec-
tories using wavelet transform and deep learning approaches,
we focus on introducing the research background of previous
studies utilizing GPS data. Interested reader can refer to [14],
[15] for complete surveys on related research.

Reference [11] is among the pioneer work that utilizes GPS
trajectories for travel mode identification. In the proposed
approach, long trajectories are first divided into multiple trip
segments with distinct modes using a change-point-clustering
segmentation scheme. Statistical features of the segments, e.g.,
mean and variance of speed, are used as inputs of traditional
classification techniques, which develop the travel modes.
This work laid the foundation stone of the popular two-step
identification paradigm. In order to obtain better performance,
researchers carefully tweaked the statistical features in follow
up research, referring to [3], [16], [17] for some examples.
To illustrate the effectiveness of the features, reference [18]
presented a series of empirical studies and concluded that
frequency-domain features of trajectories are critical in travel
mode identification using GPS data.

On the other hand, using advanced learning techniques
to automatically extract data features has received attention
in recent years. Among the techniques, machine learning is
arguably the most widely adopted due to its excellent dis-
tinctive feature extraction capability given sufficient training
data [19]. Reference [3] proposed a random forest classifier
combined with a rule-based classification method for travel
mode identification. This work emphasizes the importance of
socioeconomic attribute data on the accurate classification.
However, the inclusion of socioeconomic data hinders its
practical usage since such data may not be always available,
and they did not lead to outstanding performance compared
to other approaches. Reference [20] developed a deep neural
network-based strategy to automatically extract supplementary
data features from entity movement trajectories. The fea-
ture extraction process is enhanced by a tailor-made spatio-
temporal information-preserving data transformation mech-
anism. Nonetheless, the detection accuracy is inferior: on
the widely-adopted GeoLife [11] dataset, the accuracy barely
reaches 67.9%. Reference [9] created a new convolutional
neural network-based travel mode identification mechanism.
By a series of data preprocessing schemes, the proposed
mechanism is capable of interpreting the raw trajectory data
with fundamental motion characteristics, which are employed
in the neural net for classification. However, as convolution
neural network (CNN) is adopted as the backbone of the
proposed algorithm, the length of trajectories must be fixed.
Additionally, the length employed in [9], i.e., 200, is too
long to be considered universal as a significant portion of
trajectories in real life and in GeoLife has only dozens of
GPS records [11]. This limitation is also observed in the
approach proposed by [21] which devised a hybrid deep
learning model empowered by convolutional bi-directional
LSTM for transportation mode identification, and [22] which
presented a control gate-based recurrent neural network-based
strategy for travel mode detection, which made use of addi-
tional mobile phone sensor information for better accuracy.
Reference [23] trained a bi-directional LSTM classifier with
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Fig. 1. Data flow of the proposed travel model identification mechanism.

both the raw trajectory data and the heterogeneous data
sampling interval as an extra feature for better identification
accuracy. Nonetheless, while trajectories are embedded into
multiple groups of different sampling intervals, how they
interact with the proposed model is not stated, rendering a
restricted solution to trajectory identification. Most machine
learning-based identification approaches do not notably excel
those with manual feature selection in terms of identification
accuracy [9]. To handle these drawbacks, we propose a new
mechanism for travel mode identification. By utilizing LSTM
as the backbone, the proposed mechanism can accept variable-
length GPS trajectories, and the input features are carefully
engineered so that no additional socioeconomic data are re-
quired. Additionally, DWT enables the proposed mechanism
to extract frequency-domain data features, which notably boost
the detection accuracy as will be shown in Section IV-B.

III. TRAVEL MODE IDENTIFICATION MECHANISM

As analyzed in Section II, existing research mostly relies on
manually selected temporal characteristics in GPS trajectories
for travel mode identification. Other work that tries to make
use of intelligent systems to extract partial temporal character-
istics cannot fully utilize the frequency-domain characteristics
from the data. To fully exploit the hidden information exists
in GPS trajectory data, we propose a DWT and LSTM-based
travel mode identification mechanism in this section. We first
elaborate the system structure and data flow of the proposed
mechanism. Then we present the detailed formulation of the
mechanism with brief introductions to employed techniques.

A. Structure of the Proposed Mechanism

The structure of the proposed mechanism is depicted in
Fig. 1. This mechanism takes GPS trajectories, which are
series of GPS records, to infer the travel mode. Since the raw
GPS data only explicitly presents minimal travel information,
it is firstly pre-processed to expose more relevant trajectory
properties to subsequent calculations. Then the processed data
is input into a feature extractor to obtain the frequency-domain
features of the trajectory, and the intermediate results are
cached in an intermediate signal database. Subsequently, the
extracted features are input into a mode identifier together

with the previously processed GPS data. Finally, the output
of the identifier is considered an inference of the travel mode
represented by the input GPS trajectory. This completes the
whole identification task.

The proposed mechanism is designed to be capable of
both online and global travel model identification. For online
identification, the mechanism waits for at least ω GPS records
in a trajectory before performing calculations. After ω − 1
records, whenever a new one is available, the whole process
is repeated to develop an updated result. To eliminate repetitive
computations among consecutive identifications of a same
trajectory, a latent information database is introduced to cache
the intermediate values produced by the mode identifier. The
information can later be retrieved if the mechanism has to infer
the same trajectory with more GPS records. This scheme will
be further elaborated in Section III-E.

In the proposed design, it is evident that all the three main
blocks (data pre-processing, feature extractor, and mode iden-
tifier) play critical roles in accurately identifying travel modes.
These blocks cooperate to derive the distinguishing temporal-
correlated characteristics of the GPS trajectories, which are
successively adopted to make classifications. In this paper, we
follow the previous literature on travel mode identification to
design the GPS data pre-processing algorithm. We employ
DWT to extract the frequency-domain features thanks to its
outstanding feature-summarizing capabilities demonstrated in
other research, e.g., [24], [25]. Finally, we construct a DNN to
further exploit the data features from trajectories automatically,
and perform the mode identification task.

B. GPS Data Pre-processing

The motivation of the pre-processing step is intuitive as
follows. Raw GPS data is typically collected over a period of
time, and each record is presented as a 3-tuple comprised of
the latitude, longitude, and absolute time of the GPS sampling
device. However, it cannot be guaranteed that consecutive
GPS records in a trajectory are sampled at a constant rate,
rendering the isolated positions less useful in identification, see
[11] for detailed explanations. A commonly adopted solution
is to combine the position and time information to develop
speed-related characteristics, which can be handled by other
techniques more easily [9]. Additionally, pre-processing the
raw data can incorporate human knowledge in travel mode
identification tasks. This can alleviate difficulties in training
the intelligent system in subsequent data processing blocks
of the proposed mechanism. Data pre-processing is a widely-
adopted pattern in other travel mode identification algorithms
presented in the literature, e.g., [9], [11], [15].

We consider a series of GPS records {R1, R2, · · · , Rω,
· · ·Rn} of length n, each of which is defined by Ri =
〈lati, lngi, ti〉 where lati, lngi, ti are the latitude and longitude
of the sampling device location, and the sampling time,
respectively. When calculating the distance between two GPS
locations Ri and Rj , we use the Vincenty’s formulae [26]
for its accuracy, denoted by Vincenty(lati, lngi, latj , lngj).
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Fig. 2. An illustration of the turn ui at GPS location Ri.

For two consecutive records Ri and Ri+1, the distance is
calculated by

di = Vincenty(lati, lngi, lati+1, lngi+1) (1)

Based on the distances in a trajectory, we can first construct
three motion-related attributes as follows:

si = di/(ti+1 − ti),∀i ∈ N+, i < n; sn = sn−1; (2a)
ai = (si+1 − si)/(ti+1 − ti),∀i ∈ N+, i < n; an = 0; (2b)

ki = (ai+1 − ai)/(ti+1 − ti),∀i ∈ N+, i < n; kn = 0; (2c)

where si, ai, ki denote the speed, acceleration, and jerk
at location Ri, respectively. Besides the commonly adopted
speed and acceleration, we follow [9] and incorporate jerk in
the attribute set, which is considered a significant characteristic
during safety issues related to transportation [27]. In (2), both
attributes are padded to make their lengths equal to n.

When interpreting raw GPS data into motion-related at-
tributes, the displacement-related information is discarded,
which can also be important in identifying travel modes.
Intuitively, it is much easier for pedestrians to take sharp turns
within few seconds than bicycles and buses. Therefore, we also
calculate a new displacement attribute – “turn” – to account
for the missing information as follows:

ui =tan−1
Vincenty(lati, lngi, lati−1, lngi)

Vincenty(lati, lngi, lati, lngi−1)

− tan−1
Vincenty(lati, lngi, lati+1, lngi)

Vincenty(lati, lngi, lati, lngi+1)
,

∀i ∈ N+, 1 < i < n;

un = u0 = 0, (3)

where ui is the turn of trajectory at location Ri. The calcu-
lation of this equation is illustrated in Fig. 2, in which ui
corresponds to the angle difference between α and β.

Using (2) and (3), the raw GPS data can be pre-processed
into an aligned time sequence vector of length n with four
motion and displacement attributes. This data serves as the
input of both the feature extractor and the mode identifier,
which are introduced in the following sub-sections.

C. Trajectory Feature Extractor

During the data pre-processing, raw GPS data is trans-
formed into aligned motion and displacement attribute vectors.
While it is possible to solely rely on DNN to extract the
hidden features among them, a better approach is to use
established knowledge in signal processing when analyzing the
data characteristics, which can later improve the identification

performance of DNN. In this work, we adopt DWT to extract
the hidden time-frequency domain features in the processed
data. This technique convolves the input signal with discrete
wavelets ψa,b(t), which can be developed from pre-defined
mother wavelets ψ(t) at level a and location b as follows:

ψa,b(t) =
1√
2a
ψ(

t

2a
− b), a, b ∈ Z. (4)

Given a time sequence signal s(t), DWT transforms the input
by wavelet ψa,b(t) into the following signal:

da,b(s(t), ψ(t)) =

∫ +∞

−∞
s(t)ψ∗a,b(t) dt = 〈s(t), ψa,b(t)〉, (5)

where ψ∗a,b(t) is the complex conjugate of ψa,b(t).
Furthermore, DWT can be interpreted in terms of a multi-

resolution decomposition of the input signal [28], where a
hierarchy of an approximation and M -level of detailed signals
can be constructed:

s(t) =
∑
b

AM,b 2
−M/2ϕ(

t

2M
− b)+

M∑
a

∑
b

da,b(s(t), ψ(t)) 2
−a/2ψ(

t

2a
− b)

,AM (t) +

M∑
a

Da(t), (6)

where AM,b = 〈s(t), ϕM,b(t)〉 are the approximation coeffi-
cients at level M , and ϕ(t) is a companion scaling function
[28]. Using (6), input signal s(t) is decomposed into an
approximation signal AM (t) and M detail signals Da(t). This
decomposition works as a sequence of high-pass and low-
pass filters. Interested reader may refer to [28] for detailed
theoretical analysis.

Different from previous research utilizing DWT for data
analysis, e.g., [24], [25], we are more interested in the general
trend of GPS trajectory attributes than the details. In addition,
since the GPS records are typically sparse compared with
electrical signals, the details of the ground truth signal may
be in fact lost in GPS trajectories. Therefore, we discard
all detail signals and only employ the approximation signal
AM (t) of the four pre-processed attributes. We follow the
analysis in [24] and adopt db (daubechies) and sym (symlets)
mother wavelets to decompose the attributes. The selection
of mother wavelets is based on the characteristics of the
data set. When there are sufficient samples, both employed
families are generally preferred contributed by their robustness
and agnostic to heterogeneous data properties, e.g., signal
length and sample size. Consequently, we select eight discrete
wavelets from db and sym families to extract the time-
frequency domain feature of the processed data as presented
in Table I.

From (6), it can be observed that the decomposition level
M influences the approximation signal. There is a maximum
level of decomposition for each discrete wavelet determined
by the signal and wavelet decomposition filter lengths:

M = blog2
n

F − 1
c, (7)
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TABLE I
SELECTED WAVELETS AND THEIR FILTER LENGTHS

Wavelet Filter Length Wavelet Filter Length
db1 and sym1 2 db2 and sym2 4
db3 and sym3 6 db4 and sym4 8

where F is the filter length. In this work, we set the de-
composition level to its maximum value in order to obtain
fine-grained decomposed signals, which is also recommended
by the literature, e.g., [24], [29]. The details of selected
discrete wavelets are also presented in Table I. Combining
this table and (7), it is clear that ω must be no less than
14 in order to at least have one decomposition level in all
of the selected wavelets, i.e., ω ≥ 14. Consequently, totally
eight approximation signals can be calculated for each GPS
trajectory comprising 14 GPS records or more. Nonetheless,
the decomposed signals are in general too long as inputs of the
subsequent DNN [24]. To handle this issue, we manually select
a series of statistical features of these approximation signals
to represent the characteristics of the original GPS trajectory
attributes. Specifically, we calculate the maximum, minimum,
mean, and standard deviation values of all the eight AM,b

signals to provide input information for the subsequent DNN.
These statistics have demonstrated their superiority in the
literature, see [24], [25], [29], [30] for examples. Finally, given
a GPS trajectory, 4 attributes×8 wavelets×4 statistics = 128
features can be calculated. The feature values are used to
construct a feature vector, which is input into a DNN-based
travel mode identifier to develop the result.

D. Travel Mode Identifier

DNN is a type of machine learning techniques which
employs multiple hidden neuron layers to emulate the highly
non-linear mathematical relationships between the input and
output provided in a training data set [19]. It has been widely
adopted in many areas of research, and is recognized as one of
the most effective data classifiers [31], [32]. In this work, we
construct a DNN to handle travel mode identification tasks.

The schema of the proposed DNN structure is presented in
Fig. 3. In this network, there are three major components,
namely, LSTM, residual links, and fully connected neuron
layers (FCL). LSTM maps the t-th record and all previous
ones in the input, i.e., {〈si, ai, ki, ui〉|∀i ≤ t}, to an output
vector ht using the following calculations [33]:

ft = σ(Wf · [ht−1, xt] + bf ), (8a)
it = σ(Wi · [ht−1, xt] + bi), (8b)
ot = σ(Wo · [ht−1, xt] + bo), (8c)
ct = ft ∗ ct−1 + it ∗ tanh(Wc · [ht−1, xt] + bc), (8d)
ht = ot ∗ tanh(ct), (8e)

where xt = 〈si, ai, ki, ui〉 is the input vector, ft, it, ot are
the intermediate gate states, ct is the intermediate cell state,
σ(·) is the sigmoid function, and we use symbol ∗ to denote
Hadamard product. All W and b entries in the equations denote
the network weights and biases to be trained, which are called
network parameters together. From the equations, it can be

GPS Trajectory Attributes

Output: n records × 4 attributes

LSTM Output: n × 128

LSTM Output: n × 512

LSTM Output: n × 512

LSTM Output: n × 512

LSTM Output: n × 512

LSTM Output: 1 × 128

Output: 1 × 128 DWT

Output: 1 × 256 Concat

FCL Output: 1 × 128

FCL Output: 1 × 32

FCL Output: 1 × P

Travel Mode

ReLU
Dropout 30%

ReLU
Dropout 30%

SoftmaxResidual Link

Fig. 3. Schema of the proposed travel mode identifier.

observed that to calculate ht, both the previous output ht−1
and cell state ct−1 are employed, and variables ht and ct
are also involved in the subsequent ht+1 calculation. In this
process, the temporal feature characteristics can be extracted
from the input data, which is essential in identifying travel
modes from trajectories.

Furthermore, we introduce residual links inspired by resid-
ual network, which aims to resolve the accuracy saturation
problem exists in DNN [34]. The design principle is quite
simple: adding an additional identity function to the existing
network structure such that the new structure with a residual
link is easier to optimize than the original one [34]. As
presented in Fig. 3, each residual link in the proposed DNN
bypasses a layer of LSTM. The new mapping function between
xt and ht can be re-written as follows:

ht = LSTM(xt, ht−1, ct−1) +Wrxt + br, (9)

where LSTM(· · · ) refers to the LSTM calculations defined
in (8), and Wr and br are trainable network parameters.
The introduction of residual links can effectively improve
the performance of the proposed identifier, which will be
demonstrated by empirical studies in Section IV-B.

After being extracted by the LSTM layers, the temporal
features of the input GPS trajectory attributes are concatenated
with the time-frequency domain features previously obtained
by DWT. The new feature vector is input into three consecutive
FCL to perform the identification, each of which can be
mathematically expressed as follows:

y = actv(Wdx+ bd), (10)

where actv(·) is the layer-wise activation function, and Wd

and bd are trainable network parameters. We adopt Rectified
Linear Units (ReLU), i.e., f(x) = max(0, x), as the activation
function of the first two layers due to its simplicity and non-
linearity [19]. Since we are interested in identifying which
travel mode can be inferred from the GPS trajectory out of
a total P modes, the last layer is activated by the softmax
function [19].
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In the proposed DNN, the values of all network param-
eters need to be fine-tuned in order to emulate the non-
linear relationship between input trajectory attributes and the
output travel mode. Nonetheless, the enormous number of
such parameters makes it impractical to be simultaneously
optimized without significant overfitting problems [19], [35].
In this work, we adopt an effective scheme called “dropout”
to handle the problem. Dropout randomly removes the output
of a number of neurons at a controlled probability during
training process, such that these neurons are not involved in
the computing graph of the network. Hence, the classifica-
tion result does not have strong correlations with arbitrary
individual neuron parameters. This scheme has demonstrated
superior performance in alleviating the overfitting issue in deep
learning thanks to its capability of reducing the co-adaptation
relationship among the network parameters [19], [35]. Dropout
is applied to the first two FCLs in the networks, each of which
has a 30% random dropout probability.

E. Caches for Online Travel Mode Identification

Using the data pre-processing scheme, trajectory feature
extractor, and travel mode identifier elaborated in previous sub-
sections, it is evident that the system can determine a travel
mode given a raw GPS trajectory with a sufficient length. This
meets the requirement by the global travel mode identification,
in which batches of such trajectories are input into the model
and they are not updated or modified subsequently.

Meanwhile, online travel mode identification takes a step
further. The system needs to provide pre-mature identifica-
tions, and later update the result given more GPS records in
a same trajectory which are originally not available. While it
is possible to process the new trajectories without using prior
knowledge, such information can notably reduce the repetitive
computations, rendering a faster identification speed. In the
proposed mechanism, we use two caches to store the results
of computation steps in DWT and DNN for later use. In
particular, the intermediate approximation signals calculated
during the multi-resolution decomposition in DWT can be
re-used if a new input signal is to be decomposed with the
same wavelet [28]. These intermediate results are stored in
an intermediate signal database. Similarly, the output and cell
state of all LSTM layers in the proposed DNN can be re-
used according to (8), which are stored in a latent information
database. For instance, to evaluate the result of an n-step input
without prior information, all five sub-equations have to be
calculated for n times. If a new (n + 1)-step input with the
same first n steps as the previous one is to be evaluated, each
sub-equation is calculated only once given cn and hn, which
are previously computed. In theory, n+ 1 times speedup can
be achieved with the database.

IV. CASE STUDIES

In this work, we propose a novel travel mode identifier
based on DWT and DNN. In this section, we conduct a series
of comprehensive case studies to assess its performance. In
particular, we first compare the proposed mechanism with
other identification approaches in recent literature and other

machine learning techniques. Subsequently, we conduct a
preliminary hyperparameter test to illustrate how to design
the DNN architecture to yield the best system performance
and the necessity of DWT. Then we investigate the online
identification accuracy of GPS data streams to test the system
robustness in online travel mode identification cases. Finally,
we study the impact of the computed data attributes by the
pre-processing step on the system performance.

In the case studies, we adopt 32 444 real-world crowd-
sourced GPS trajectories by 69 users in GeoLife project
[11], [16] in a period of over five years. Each trajectory is
comprised of a sequence of GPS records with heterogeneous
and infrequent sampling intervals from 1 s to 5 s. We generally
follow the previous work [9] to segment the raw data and
assign travel modes. Specifically, we consider the five ground-
based travel mode in the data set, i.e., walk, bike, bus, car2,
and train. Meanwhile, unlike [9], we do not employ a further
data cleansing approach that makes use of transportation
network or social information, e.g., road speed limit, human’s
available cycling power, etc. The un-cleansed data can in fact
test the robustness of the proposed travel mode identification
mechanism, and the previously employed data cleansing may
not be available for many transportation systems or in online
identification process.

To train the network parameters of the proposed DNN with
supervised learning, we first divide all 32 444 trajectories into
two data sets by the ratio of 3:1, which accords with the
common practice, see [36], [37] for examples. The set with
24 333 trajectories, called training set, is used to train the
neural network with Adam optimizer [38] and multinomial
cross-entropy loss [19]. The other set with 8111 trajectories,
called testing set, is used to evaluate the system performance
after the DNN is well-trained. This design is mainly for cross-
validation, and over-fitting problem can be easily identified
[19].

All case studies are conducted on computing servers with
two Intel Xeon E5 CPU and 128 GB RAM. The simulation is
developed in Python, and the proposed DNN is modeled with
PyTorch [39]. Eight nVidia GTX 1080 Ti GPUs are employed
on each server for algebraic and DNN computing acceleration.
Lastly, ω is set to 16, whose sensitivity can be illustrated by the
system performance of online identifications in Section IV-C.

A. Identification Accuracy

We first investigate the accuracy of identification by the
proposed mechanism, which is among the most important
performance metrics in determining travel modes based on
GPS trajectories. We use the previously defined training set
to tune the network parameters in the constructed DNN, and
adopt the testing set to evaluate the accuracy. The simulation
results are presented in Table II. In this table, the multi-
class identification results are demonstrates in the form of
confusion matrices with respect to the testing and training sets.
In addition, the recall and precision values for each individual
travel mode are calculated, which imply the accuracy of the

2In the original data set, car and taxi are counted interchangeably. Hence,
we combine the two classes as one.
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TABLE II
CONFUSION MATRICES OF THE PROPOSED TRAVEL MODE IDENTIFICATION MECHANISM

Testing Set Training Set
Predicted Mode Recall (%) Predicted Mode Recall (%)Walk Bike Bus Car Train Walk Bike Bus Car Train

R
ea

l
M

od
e Walk 2528 44 19 12 4 96.9 7557 118 51 29 10 97.3

Bike 62 1279 20 14 5 92.7 174 3892 65 38 19 92.9
Bus 11 37 1658 86 28 91.1 36 131 4983 247 75 91.1
Car 9 26 65 1019 22 89.3 25 77 202 2977 68 88.9
Train 10 23 41 52 1037 89.2 26 68 130 147 3188 89.6

Precision (%) 96.5 90.8 92.0 86.1 94.6 92.7 96.7 90.8 91.6 86.6 94.9 92.9

TABLE III
COMPARISON OF TRAVEL MODE IDENTIFICATION APPROACHES

Approach Accuracy (%)
Proposed 92.7
DT-heuristic [11] 76.2
CNN [9] 84.8
Image-based DNN [20] 67.9
k-NN (in [9]) 63.5
SVM (in [9]) 65.4
RF (in [9]) 78.1
MLP (in [9]) 59.4
RF-based [3] 82.0

identifier on specific modes and the precision of the identifier
if a specific mode is predicted, respectively. The overall
identification accuracy is also presented in bold for both sets.

From the simulation results it is quite clear that the pro-
posed mechanism yields satisfactory travel mode identification
accuracy. Additionally, “walk” mode can be more precisely
identified compared with other modes. This is contributed by
the more training instances of this mode [9]. Nonetheless,
identifications on the other modes are still accurate despite
the imbalanced training data thanks to the well designed neural
network structure. Lastly, it can also be observed that modes
“walk” and “bike” are more commonly mis-identified as the
other, and so are “bus” and “car”. This is because these modes
may share similar motion and displacement characteristics.

It is also of interest to investigate the performance improve-
ment of the proposed mechanism compared with previous
results in the literature and other machine learning techniques.
To illustrate this, we include the identification results of a
series of methodologies on the same data set, namely, decision
tree (DT)-based heuristic [11], CNN [9], image-based DNN
[20], k-nearest neighborhood (k-NN), support vector machine
(SVM), random forest (RF), and multilayer perceptron (MLP).
In addition, reference [3] proposed two RF-based travel mode
identifiers, one of which only uses GPS trajectories. We
implement this approach and adopt the GeoLife data set to
test its performance. The accuracy of all other compared
approaches are adopted from the respective publication.

The comparison are demonstrated in Table III. We can easily
draw a conclusion from this table that the proposed mechanism
can significantly outperform all compared approaches on the
same GeoLife data set. In particular, a 7.9% identification
accuracy improvement from 84.8% to 92.7% can be witnessed
beyond the state-of-the-art in the literature, i.e., [9]. This is
due to the different design principles of the neural networks.
In [9] the CNN-based approach presents time-sequence data

TABLE IV
TRAVEL MODE IDENTIFICATION APPROACHES WITH DIFFERENT DATA

SET AND/OR ADDITIONAL INFORMATION

Approach Accuracy (%) Other Information Required
Proposed 92.7 -
SVM-based [10] 97.1 Smart phone sensors (≥5Hz)
RF-based [3] 89.3 -
RF-based [3] 93.1 Socioeconomic attributes
Statistical [40] 79.3 to 94.7 Instant speed and heading

as different features in a convolution layer. While this design
can guide the network to consider the whole time horizon
simultaneously, the temporal correlation in the input time
sequence is discarded. On the contrary, this correlation is
considered by both the wavelet transform process and the
LSTM layers in our proposed design, resulting in improved
performance. This is also a main reason for the superior
identification accuracy compared with other approaches.

Furthermore, we also compare the proposed mechanism
with other recent identification approaches using other data
sets and optionally more information in [3], [10], [40] for
readers’ reference. Their overall identification performance is
presented in Table IV. From the results, it is clear that although
more information is required to develop travel mode results,
the approaches in [3], [40] can only achieve a similar identifi-
cation accuracy (within 2%). Considering that the testing data
set in these references are relatively small, i.e., 914 for [3]
and 324 for [40], the robustness of these approaches remains
unknown. Additionally, the RF-based approach without addi-
tional information in [3] may serve as a baseline to compare
Tables III and IV. As the approach can only score 82.0%
accuracy, it seems that the data set used in this work is more
difficult to be classified than data in the literature. Meanwhile,
the SVM-based approach proposed in [10] can achieve an
identification accuracy of 97.1%, providing relatively high-
frequency sensor data of smart phones. The performance im-
provement is established based on a higher data transmission
throughput requirement, which may not be always possible. In
addition, our proposed GPS trajectory-based approach is not
limited to smart phone devices. Therefore, both this work and
[10] devise valid travel mode identification algorithms, which
may be suitable for different real-world applications.

Lastly, we record the required computation time of the
proposed mechanism. For all 8111 trajectories, the average
identification time is less than 10ms, and the system can
be trained within 56min. According to the record in [9],
the CNN based approach listed in Table III can be trained
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TABLE V
A SELECTION OF WELL-PERFORMING DNN ARCHITECTURES AND THEIR TRAVEL MODE IDENTIFICATION ACCURACY

Model LSTM×3 Res. LSTM Res. LSTM Res. LSTM Res. LSTM FCL FCL FCL FCL Accuracy (%)
Proposed 128/512/512 Yes 512 Yes 512 Yes - - 128 128 - 32 P 92.7

A 128/512/512 - - - - - - - 128 128 - 32 P 79.5
B 128/512/512 Yes - - - - - - 128 128 - 32 P 79.6
C 128/512/512 - 512 - - - - - 128 128 - 32 P 87.3
D 128/512/512 Yes 512 Yes - - - - 128 128 - 32 P 88.0
E 128/512/512 - 512 - 512 - - - 128 128 - 32 P 92.1
F 128/512/512 Yes 512 Yes 512 Yes 512 Yes 128 128 - 32 P 92.4
G 128/512/512 Yes 512 Yes 512 Yes - - 128 - - 32 P 90.9
H 128/512/512 Yes 512 Yes 512 Yes - - 128 128 128 32 P 92.3

TABLE VI
IDENTIFICATION ACCURACY WITHOUT DWT

Model Testing Accuracy (%) Training Accuracy (%)
Proposed 92.7 92.9

Proposed w/o DWT 88.0 89.6
Model E w/o DWT 87.2 89.1
Model F w/o DWT 87.6 89.3
Model H w/o DWT 87.7 89.6

in approximately 25min. Nonetheless, the model training
process is typically conducted offline, and well-trained model
can be used for travel mode identification without the need
of further training. Therefore, both 25min and 56min offline
training time are acceptable. Considering that the identification
error rate is reduced from 15.2% (CNN) to 7.3%, the proposed
mechanism still outperforms the other approaches.

B. Identifier Architecture

In this work, we propose a DWT and DNN-based travel
mode identification mechanism. In the proposed DNN, we
adopt several layers of LSTM and FCL to perform the
data classification task. When designing a neural network, a
common problem is to determine the number of layers to
develop satisfactory results. In this sub-section, we conduct
a preliminary DNN hyperparameter test to determine a well-
performing DNN structure. In addition, we also investigate the
necessity of DWT in the proposed mechanism.

We first test the architecture of the proposed DNN. Table V
presents a selection of well-performing structures. In this table,
“Res.” denotes a residual link for the previous LSTM layer,
and the values in the table represents the number of output
features in the corresponding layer. The output of DWT is
always concatenated with the output of the last LSTM layer as
the input of the first FCL. All architectures are trained with the
same training set, and the identification accuracy is assessed
by the same testing set. From the table we can come to a
series of conclusions. First, including more LSTM layers in
the architecture generally improves the system performance
until the seventh one, which decreases the accuracy from
92.7% to 92.4% (model F). This accords with the widely
recognized concept of deep learning that while more neural
network layers can improve the capability of extracting hidden
data features, deeper architectures are more difficult to train
and prone to over-fitting [19]. Additionally, adding residual
links can slightly improve the performance. This is due to
the fact that residual links can flatten the network parameter

searching space, rendering a faster training speed [34]. Hence,
better accuracy can be expected given finite training time and
epochs. Finally, three layers of FCL after LSTM and DWT
output concatenation is sufficient to perform the travel mode
classification. More or less layers undermine the identification
accuracy, though not substantially.

We also conduct a second analysis on the impact of DWT.
Specifically, the best performing architectures from Table V,
i.e., the proposed one, as well as models E, F and H, are
selected to construct travel model identification mechanisms
but without DWT. The output of LSTM layers is directly input
into the first FCL without the original concatenation step.
The new mechanisms are trained and tested with the same
data set, and the results are presented in Table VI, in which
“w/o” stands for “without”. The simulation result indicates
that DWT can notably improve the system performance on
identifying travel modes. This can be observed by comparing
the testing accuracy values with the corresponding ones pre-
sented in Table V. Furthermore, there is another interesting
observation on the training accuracy without DWT that the
gap between training and testing accuracy is larger when DWT
is not involved in the computation. The observations lead to
a conclusion that the hidden time-frequency domain features
extracted by DWT are among the distinguishing ones for travel
modes. Indeed, DWT is necessary in the proposed mechanism
to further improve the system performance.

C. Online Travel Mode Identification
In previous case studies, the GPS trajectories in the testing

set are considered as completely known when performing the
classification, which corresponds to the global travel mode
identification scenario. In the meantime, other real-world ap-
plications heavily rely on real-time accurate identification of
travel modes given preliminary or partial GPS trajectories.
While the proposed mechanism can handle streams of incom-
ing GPS records thanks to DWT and LSTM, it is of interest
to investigate how it performs in such cases, especially when
there are few existing records in GPS trajectories.

In this sub-section, we conduct an online travel mode
identification study using the same testing data set as in
previous simulations. Instead of inputting the whole sequence
of GPS records into the mechanism, we only use the first ω∗

records to develop a pre-mature identification result. The result
is then compared with the real travel mode to determine the
system performance. All 8111 trajectories in the testing set are
employed in this process, and the identification results among
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Fig. 4. Testing accuracy of online travel mode identification with different
lengths of GPS trajectory.

{ω∗ ∈ N+|14 ≤ ω∗ ≤ 30}3 for each and all travel modes are
summarized in Fig. 4.

From the results it is clear that the proposed mechanism can
develop satisfactory identification results when ω∗ ≥ 16. This
is because the approximation signals developed by wavelets
with longer filter length, e.g., db4 and sym4, is too short
to represent significant time-frequency domain features of
the original signal when ω∗ ∈ {14, 15}. In such cases, the
mechanism mostly relies on DNN to perform the identifica-
tion, rendering a relatively inferior performance. Despite this
observation, the accuracy of ω∗ ∈ {14, 15} still exceeds 90%,
which notably outperforms other travel mode identification
approaches in the literature as indicated in Table III. On
the other hand, the accuracy is not significantly improved or
undermined when ω∗ is greater than 16. This indicates that
the proposed mechanism requires at least 16 GPS records in
a trajectory to achieve its best identification accuracy, which
corresponds to up to 57 s in the employed GeoLife data set.

Additionally, among the five travel modes in the data set,
low-speed ones (walk, bike, and bus) are relatively more prone
to short GPS trajectories. While the identification accuracy
for car and train is also subpar with ω∗ ∈ {14, 15}, the
performance decrease is not as notable as the other three
modes. In spite of this, all modes can achieve stable and
satisfactory accuracy with ω∗ ≥ 16. The case study indicates
that the proposed mechanism is suitable for online travel mode
identification.

D. Selection of Data Attributes

In Section III-B, four motion and displacement attributes are
defined based on the raw GPS data. According to Fig. 1, the
data serve as the only input of the subsequent computations.
Hence, we are interested in investigating if all the attributes can
contribute to the identification performance of the proposed
mechanism. In this sub-section, we conduct a series of sim-
ulations to test the sensitivity of these attributes. Specifically,
we first create several combinations of these attributes as

3The minimal value, i.e., 14, is selected in accordance with the analysis in
Section III-C.

TABLE VII
ATTRIBUTE COMBINATIONS AND ACCURACY

Combination si ai ki ui Accuracy (%)
Proposed Yes Yes Yes Yes 92.7

A Yes Yes - - 90.6
B Yes Yes Yes - 91.5
C - Yes Yes - 88.4
D Yes - - Yes 91.0
E Yes Yes - Yes 91.7
F - Yes Yes Yes 90.1

presented in Table VII. Each combination is independently
tested using the proposed mechanism and GeoLife data set,
and the testing set identification accuracy is summarized. Note
that the number of neurons in the first layers of LSTM and
FCL are modified to accommodate the changing number of
attributes.

The simulation results lead to some insights into the se-
lection of data features. On the one hand, the speed and
turn attributes play critical roles in identifying travel modes.
Combination B and the proposed one both witnesses signif-
icant performance improvements over combinations C and
F, respectively, thanks to the inclusion of speed attribute.
Similar trends can also be observed on combination E and
the proposed one comparing with combinations A and B due
to introducing the turn attribute ui, respectively. On the other
hand, the above observation does not rule out the necessity
of acceleration ai and jerk ki. In general, the identification
accuracy increases with more attributes included in the com-
putation according to Table VII. Hence, all the four motion and
displacement attributes developed in the pre-processing step of
the proposed identification mechanism contribute to accurately
determining travel modes based on GPS trajectories.

Furthermore, we also investigate some other statistical fea-
tures of the DWT approximation signals, namely, skewness,
kurtosis, energy, and entropy. Specifically, we construct two
new sets of attributes. The first one includes the original four as
described in Section III-C together with skewness and kurtosis,
and the second one includes all eight attributes. The former
achieves a 92.5% overall accuracy with a 61min training,
while the latter develops a 92.8% overall accuracy with a
77min training. Compared with the benchmark performance
of 92.7% accuracy and 56mintraining, neither of the new
attribute sets can develop better accuracy with comparable
training time.

V. CONCLUSIONS

In this paper, we propose a new travel mode identification
mechanism with only GPS trajectories based on discrete
wavelet transform (DWT) and deep learning techniques. This
mechanism takes a series of raw GPS records as input to
infer the corresponding travel mode. Specifically, the input
data is first pre-processed to summarize four motion and
displacement attributes, namely, speed, acceleration, jerk, and
turn. These attribute vectors then go through DWT in order
to obtain the hidden time-frequency domain features. At the
same time, the vectors are also input into a tailor-made deep
neural network (DNN), which jointly considers the previously
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extracted features by DWT and develops the final travel mode
inference. Different from previous work, the proposed mecha-
nism fully utilizes temporal correlations in GPS trajectories to
train an intelligent system for identification, and the length of
trajectories does not need to be fixed. In addition, the whole
identification process can be conducted in real-time thanks
to the computationally efficient nature of DWT and DNN
employed in the mechanism.

To evaluate the performance of the proposed mechanism, a
series of comprehensive case studies are carried out. We first
test the identification accuracy on a real-world crowd-sourced
data set with 32 444 GPS trajectories, and compare the results
with state-of-the-art travel mode identification approaches in
the literature. The comparison indicates that the proposed
mechanism can provide notably more accurate identifications
on the same data set, i.e., 92.7% versus 84.8%. In addition,
we conduct a structure test to reveal the best-performing
architecture for the mechanism. Subsequently, we investigate
the performance of the proposed mechanism on classifying
online GPS trajectories. The results show that satisfactory
accuracy can be achieved with reasonably short trajectories.
Finally, a feature sensitivity test is conducted, which indicates
that all four data attributes contribute to the identification
process.

The future work can be divided into two parts. On the
one hand, it is possible to extend the mechanism and employ
more advanced artificial intelligence and machine learning
techniques. On the other hand, the current mechanism relies on
labeled GPS trajectories in the training set. It is an interesting
research direction to investigate schemes to use unlabeled GPS
trajectories in training the mechanism.
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