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Abstract— Traffic speed forecasting has been a very active
research area as it is essential for Intelligent Transportation
Systems. Although a plethora of deep learning methods have
been proposed for traffic speed forecasting, the majority of them
can only make point-wise prediction, which may not provide
enough information for critical real-world scenarios where pre-
diction confidence also need to be estimated, e.g., route planning
for ambulances and rescue vehicles. To address this issue,
we propose a novel uncertainty-aware deep learning method
coined Uncertainty-Aware Temporal Graph Convolutional Net-
work (UAT-GCN). UAT-GCN employs a Graph Convolutional
Network and Gated Recurrent Unit based architecture to capture
spatio-temporal dependencies. In addition, UAT-GCN consists of
a specialized regressor for estimating both epistemic (model-
related) and aleatoric (data-related) uncertainty. In particular,
UAT-GCN utilizes Monte Carlo dropout and predictive variances
to estimate epistemic and aleatoric uncertainty, respectively.
In addition, we also consider the recursive dependency between
predictions to further improve the forecasting performance.
An extensive empirical study with real datasets offers evidence
that the proposed model is capable of advancing current state-
of-the-arts in terms of point-wise forecasting and quantifying
prediction uncertainty with high reliability. The obtained results
suggest that, compared to existing methods, the RMSE and MAE
of the proposed model on the SZ-taxi dataset are reduced by
2.15% and 7.23%, respectively; the RMSE and MAE of the
proposed model on the Los-loop dataset are reduced by 4.17%
and 8.53%, respectively.

Index Terms— Traffic speed forecasting, graph convolutional
network, gated recurrent unit, spatio-temporal model, uncer-
tainty quantification.

I. INTRODUCTION

INTELLIGENT transportation systems (ITS) are among the
core components of modern smart cities, playing a critical

role in our daily life.
An essential ITS element is forecasting of traffic speeds,

providing assistance to authorities for managing traffic flow
and avoiding potential congestion. Recent advances in the
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domain of deep learning have incentivized the emergence of
new methods in traffic speed forecasting [1], [2], [3], [4].

Generally, traffic speed data come as time series, in which
the temporal dependency cannot be neglected when predicting
future states based on previous states. Furthermore, since roads
in transportation systems interact with each other, the spatial
relationships are also of utmost importance. In this sense,
traffic speed forecasting can be regarded as a multivariate
spatio-temporal prediction problem, which needs to be han-
dled accordingly by capturing both spatial and temporal data
correlation.

In terms of spatial dependency, the topological structure of
a road network can be represented by a graph, in which each
node denotes a road segment or traffic sensor, and the corre-
sponding adjacency matrix represents the interactions among
multiple segments. These spatial relationships can be captured
by Graph Neural Network (GNN) [2]. As for the temporal
dependency of traffic speed data, it can be intuitively modelled
by a temporal deep learning models, such as Recurrent Neural
Networks (RNNs), Convolutional Neural Networks (CNNs),
and their variants [1], [2]. However, a particular challenge of
modelling and forecasting traffic speed data is to account for
spatial and temporal dependencies at the same time. To solve
this issue, various spatio-temporal deep learning models have
been proposed as will be described below.

Apart from the spatio-temporal correlations that are key
for traffic speed prediction, it is often also necessary to not
only obtain point estimates for the predictions, as in the
majority of existing literature, but also credibility intervals
for these predictions, enabling better better decision sup-
port and avoiding catastrophic mismanagement. For example,
when ambulances and rescue vehicles choose their routes,
the drivers may consider different routes balancing expected
travel time with the uncertainty associated with the arrival
time. In addition, models taking uncertainty into account may
have better performance when considering robustness and
generalization ability in contrast to deterministic approaches.
Uncertainty quantification (UQ) has been a highly popular
topic in the field of deep learning [5], however, although a
variety of deep learning approaches have been proposed for
traffic prediction, uncertainty quantification is an often ignored
critical component in this context.

Uncertainty is typically classified into two categories,
namely, aleatoric and epistemic uncertainty. In many real-
world scenarios, the uncertainty inherent in observations (e.g.,
sensor noise) is referred to as aleatoric uncertainty, which is
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often inevitable. This type of uncertainty cannot be reduced,
but can be modelled by probabilistic approaches by captur-
ing, e.g., the mean and the variance of the predictions [6].
On the other hand, when relevant training data is limited,
this typically translate into uncertainty about the (true) model
structure that generated the data. This is also referred to
as epistemic uncertainty. To reflect such uncertainty, one
needs to find a distribution over models rather than training
a single specific model. Bayesian approximation approaches
are commonly adopted techniques, including Bayesian neu-
ral networks (BNNs) [7] and Gaussian processes (GPs) [8].
However, these two methods come with their own limitations.
BNNs increase the number of model parameters and GPs
tend to become highly computationally expensive when the
training dataset is large. An alternative approach is Monte
Carlo dropout [9], a scheme that is widely regarded as a sim-
ple yet efficient Bayesian approximation method. Uncertainty
estimation has also recently been explored for spatio-temporal
forecasting [10], but the analysis is limited by not considering
sampling efficiency nor the recursive dependencies between
prediction steps.

In this work, we propose a novel deep learning model for
traffic speed prediction, which is capable of both capturing
spatio-temporal dependencies and quantifying the prediction
uncertainty. In our approach, we employ a Graph Convolu-
tional Network (GCN) [11] for spatial correlation, a Gated
Recurrent Unit (GRU) [12] for temporal dependencies and a
specialized regression model to quantify both the aleatoric and
epistemic uncertainty of the prediction. Finally, we analyze
and compare our model on publicly available datasets, where
the experimental results show the proposed model achieve
better uncertainty-aware forecasting performance compared to
current state-of-the-arts.

Our contributions in this work are summarised as follows:
• We propose a novel uncertainty-aware spatial-temporal

deep learning model for traffic speed forecasting which
can estimate both the epistemic and aleatoric uncertainty
in an efficient manner.

• A specialized regressor is devised to enhance the sequen-
tial prediction performance by considering the recursive
dependency between different prediction steps.

• An efficient sampling strategy is proposed to accelerate
the uncertainty estimation process.

• Extensive experiments are conducted to compare the
proposed approach with existing state-of-the-art methods.
The results suggest the superiority of the proposed model.

The remainder of the paper is organized as follows.
Section II surveys the related work, and Section III introduces
preliminary concepts and the traffic speed forecasting problem.
We then propose the Uncertainty-Aware Temporal Graph Con-
volutional Network in Section IV, followed by the empirical
study in Section V. Section VI concludes the paper.

II. RELATED WORK

In the literature, Graph Neural Networks (GNNs) are com-
monly used to capture the non-Euclidean information of traffic
data [2]. As per previous discussions, traffic speed data are

typically multivariate time series. Consequently, apart from
modelling the spatial dependencies, we need to take the
temporal dependencies into account as well.

For example, Li et al. proposed Diffusion Convolutional
Recurrent Neural Network (DCRNN) [13], which utilizes the
diffusion convolutional operations to handle directed graphs
and Gated Recurrent Units (GRUs) to model the temporal
and spatial dependencies, respectively. Similarly, Temporal
Graph Convolutional Networks (TGCNs) combine Graph
Convolutional Networks and GRU components for traffic
forecasting [14]. Alternatively, Wu et al. proposed Graph-
Wavenet [15], which utilizes the WaveNet model [16] for
capturing temporal information.

The attention Mechanism [17] has also been used to
improve traffic forecasting performance. Guo et al. introduced
the Attention-based Spatial-Temporal Graph Convolutional
Network (ASTGCN) [18], in which spatial and temporal
convolutions are combined with spatial and temporal atten-
tions, respectively. Zheng et al. devised a spatio-temporal
attention block which combines spatial and temporal attention
mechanisms through gated fusion to build-based a graph multi-
attention network for traffic forecasting [19]. Yu et al. proposed
the Spatio-Temporal Graph Convolutional Networks (STGCN)
[20], which uses spatial attention combined with Chebyshev
polynomial approximation based spatial convolution with the
temporal features being captured through Gated Convolution
Neural Networks. Zhang et al. proposed Spatial-Temporal
Graph Diffusion Network (ST-GDN) integrated with multi-
scale self-attention networks in order to learn multi-level
temporal contextual data [21].

Uncertainty quantification in deep learning has been a
popular research topic in recent years [5]. Various deep
learning-based uncertainty quantification methods have been
successfully applied in a number of application domains, e.g.,
Computer Vision (CV) [6] and Reinforcement Learning (RL)
[7]. More specifically, to estimate aleatoric uncertainty, meth-
ods including mean-variance estimation (MVE) [22], quantile
regression [23], and conformal inference [24], [25] have been
proposed. These methods can provide frequentist coverage for
testing ground truth data with respect to certain pre-defined
significance levels.

As for epistemic uncertainty estimation, there are mainly
two classes of methods can be used. One is sampling and
variational-based methods, which assume that the parameters
of models are randomly distributed in weight space (e.g.,
Bayesian Neural Networks (BNNs) [7], [26], [27], [28],
Deep Gaussian Processes (DGPs) [29], and Monte Carlo
dropout [9]). The other is deep ensemble methods which
average the predictions of a set of different models for
inference [30], [31], [32], [33], [34]. Uncertainty quantifica-
tion covering both aleatoric and epistemic uncertainties has
drawn attention of researchers in ITS as well. For exam-
ple, a Bayesian Graph Neural Network based approach [35]
has been proposed for estimating travel time distributions.
Uncertainty quantification is also important for traffic speed
forecasting, however, it has not yet been well-explored. There-
fore, the aim of this paper is to address this issue.
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Fig. 1. The uncertainty-aware traffic speed forecasting problem.

III. TRAFFIC SPEED FORECASTING WITH
UNCERTAINTY QUANTIFICATION

In a road network, road segments commonly interact with
others, thus the topology of a network with N segments
can be represented by a graph G(V, E), where the nodes
V = {v1, v2, v3, · · · , vN } represent road segments and the
set of edges E represent the spatial interactions between the
road segments. The corresponding adjacency matrix of G
is A ∈ RN×N . In this work, we focus on time-dependent
forecasting of traffic speeds on road segments, but other types
of traffic data, e.g., traffic flow, can also be adopted with
minuscule modifications. For forecasting, we consider the
mean traffic speed at road segment at discrete time points,
hence the corresponding temporal traffic speed features for
each road segment at time t can be represented by a vector
xt = {x1

t , x2
t , x3

t , · · · , x N
t }.

The objective of traffic speed forecasting is to predict
the future traffic speed based on the historical traffic speed,
which can be regarded as a multivariate time series prediction
problem. Let X<t = {xt−T , xt−T+1, xt−T+2, · · · , xt−1} be the
temporal features for every node from time point t−T to t−1,
where T is the length of the historical data input sequences.
Accordingly, X<t and A are the input of the forecasting model.
We employ X̂<t+τ = {x̂t , x̂t+1, x̂t+2, · · · , x̂t+τ−1} to denote
the prediction of every node in the graph from time t to
t + τ − 1, where τ is the predicted length.

The traffic speed forecasting problem is illustrated in Fig. 1.
Specifically, we want to quantify the uncertainty of our pre-
dictions. Since the traffic speed values are continuous in our
case, for the sake of simplicity, we assume that the final speed
predictive distribution of each node at any particular time
point, P(X̂<t+τ |X<t ,W, A), is Gaussian. The model we aim
to learn can then be defined as follows:

X̂<t+τ ∼ N (µW (X<t , A), σW (X<t , A)), (1)

where µ and σ are the mean and variance, respectively; W is
the model parameters to be learned from the raw data. Note
that the Gaussian likelihood assumption is relatively simple,
however this assumption is computationally convenient for
high dimensional time series forecasting tasks as in our case.

Fig. 2. The structure of the proposed model.

Moreover, in the later experimental section, we can see that
the proposed model with the Gaussian likelihood works well
in practice.

Finally, please note that the aleatoric and epistemic uncer-
tainties are inevitably entangled during the model training
process, especially when the data is very noisy. However,
the causes of those two types uncertainties are essentially
different. The aleatoric uncertainty represents the randomness
of the data distribution, while the epistemic uncertainty rep-
resent the randomness of the model parameters distribution.
In practice, to model the aleatoric uncertainty, we can first
use the means and variances estimated independently by max-
imizing the corresponding likelihoods of the data distribution.
To model the epistemic uncertainty, we sample multiple sets
of the model parameters (which account for the randomness
of the model parameters distribution), and use the means
and variances of those Monte Carlo samples to represent the
epistemic uncertainty.

IV. UNCERTAINTY-AWARE TEMPORAL GRAPH
CONVOLUTIONAL NETWORK

In this section, we propose the Uncertainty-Aware Tem-
poral Graph Convolutional Network (UAT-GCN) model for
traffic speed forecasting with uncertainty quantification. The
overall architecture of the proposed model is illustrated in
Fig. 2. We first give an overview of the proposed method,
and then elaborate the details. With a focus on modeling
spatio-temporal dependencies and uncertainty quantification,
we design the model by integrating three components: GCN
layers that are used to capture the spatial relationship, GRU
modules that are used to model the temporal dependency, and
a specialized module that is used to quantify the uncertainty.
Note that we choose to place the Monte Carlo dropout layer
after the recurrent structure for two reasons: one is that
dropout applied to the last few layers in our model can
capture enough epistemic uncertainty in practice; the other
is that such model structure design can accelerate the Monte
Carlo simulation process during inference [6], [26], which is
especially beneficial for the time series forecasting task in our
case.

A. Graphical Convolutional Network

Generally, the output of a typical GNN layer — H (l+1)

where l is the index of the hidden layers — can be
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Fig. 3. The spatial-temporal dependency of traffic speed data.

described as

H (l+1)
= f (H (l), A), (2)

where H (0)
= X t . More specifically, the propagation rule is

given as

f (H (l+1), A) = σ(AH (l)W (l)), (3)

where W (l) is the weight matrix and σ is a nonlinear activation
function, e.g., ReLU function.

However, there are two limitations that prevent direct usage
of Eq. (3). The first is that we only sum up the neighboring
nodes of a node without excluding the node itself, and the
second one is that multiplication with the adjacent matrix A
changes the scale of the feature vectors. To address these two
issues, GCNs adopt the following propagation rule that adds
an identity matrix to A to enforce self-loops in the graph and
use symmetric normalization to normalize A:

f (H (l+1), A) = σ(D̂−
1
2 ÂD̂−

1
2 , H (l),W (l)), (4)

where D̂ is the diagonal node degree matrix of Â, Â = A +
I , and I is the identity matrix. In our approach, the spatial
relationships among road segments are modelled by a set of
GCN layers [11] as shown in Fig. 3.

B. Gated Recurrent Unit

Traffic speed data are essentially time-series, thereby we
forecast future traffic speeds by capturing the temporal depen-
dency from the input historical traffic speed data. To this
end, one can incorporate a recurrent module, e.g., a Recurrent
Neural Network (RNN), into the model. However, as widely
recognized, the vanilla RNN suffers from long-term time
dependency issues [36]. Instead, Long Short-Term Memory
(LSTM) [36] and Gated Recurrent Unit (GRU) [12] can be
used to circumvent this problem. The difference between
these two models is that, compared to the LSTM, the GRU
model has similar performance but a lighter model structure.
We therefore employ the GRU model in UAT-GCNs to repre-
sent the temporal relationships of traffic speed measurements.

It should be noted that the spatial information within traffic
speed data is also important for traffic speed forecasting
because it reflects interactions among different road segments.
Consequently, as shown in Fig. 3, we combine the GRU
module within the GCN layers as follows:

ut = σ(Wu[ f (H l
t , A), ht−1] + bu), (5a)

rt = σ(Wr [ f (H l
t , A), ht−1] + br ), (5b)

ct = tanh(Wc[ f (H l
t , A), (rt ∗ ht−1)] + bc), (5c)

ht = ut ∗ ht−1 + (1− ut ) ∗ ct , (5d)

where u is the output gate, r is the reset gate, c is the memory
cell, h is the hidden state, W and b stand for the weights and
bias, respectively.

C. Uncertainty Quantification

In UAT-GCN, we aim to quantify two sources of uncertainty,
namely epistemic and aleatoric uncertainty. This also includes
taking into account the recurrent dependency between multiple
predictions from our time series problem.

1) Epistemic Uncertainty: Epistemic uncertainty is caused
by model mis-specification or lack of domain data. Epistemic
uncertainty can be reduced if the model is properly defined
and training data is sufficient. Epistemic uncertainty can be
modelled by various methods, e.g., Bayes By Backprop (BBB)
[7], Gaussian Processes (GPs) [8], and Deep Ensembles [34].
However, these methods also exhibit certain shortcomings.
For instance, BBB doubles the number of model parame-
ters compared to standard neural networks. While GPs and
Deep Ensembles can be computationally expensive when the
dataset is large. Spare GPs can mitigate this issue but is too
computationally complex [37]. For reasons of simplicity and
accuracy, we choose to adopt a simple and flexible, and yet
efficient method to model epistemic uncertainty in the model,
namely, Monte Carlo dropout [9]. This method can be seen as
an approximation to deep Gaussian process [29].

Dropout was originally proposed to prevent overfitting by
turning off randomly selected neurons within layers during
the training process [38]. By doing so, neural networks are
able to learn a set of independent combinations of models
to improve the generalization ability. This design principle is,
to some extent, aligned with Bayesian approximation. In a
Bayesian setting, in order to model epistemic uncertainty,
we can put distributions over each weight parameter of the
model. Accordingly, when we perform a prediction with a
testing point x∗, the posterior predictive distribution is given
by

p(y∗|x∗, D) =
∫

p(y∗|x∗, A, w)p(w|D)dw, (6)

where y∗ is the predictive mean, D = {X, Y, A} is the
training dataset, w is the model weights, p(y∗|x∗, A, w) is
the predictive likelihood, and p(w|D) is the posterior of the
weights.

Since the true posterior of the weights with respect to
the given dataset p(w|D) in Eq. (6) is typically intractable,
it is approximated by a variational distribution q(w) generated
by Bernoulli dropout layers [9] in a Monte Carlo dropout
approach:

q(Wi ) = Mi · (diag[zi, j ]
Ki
j=1), (7a)

zi, j ∼ Bernoulli(pi ), (7b)

where Wi denotes the masked weight matrices whose units
are dropped binarily with respect to the predefined dropout
probability pi in the i-th layer and Mi are the parameters
of the neural network. Consequently, the optimization objec-
tive is to minimize the Kullback-Leibler (KL) divergence
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DKL(q(w)||p(w|D)), which is equivalent to minimizing the
following loss function:

LDropout = Ew∼q(w)E[Y, fW (X, A)] − DKL(q(w)||p(w)),

≈
1
N

N∑
i=1

E(yi , f (xi , wi , A))+
λ

2p
||w||2, (8)

where N is the number of data points, E is the loss function,
yi is the target, and λ is the weight decay. The first term in
Eq. (8) can be calculated by using the mean squared error
(MSE) loss function for a regression task and the second term
correspond to L2 regularization. We also need to be aware
that the dropout rate p should not be too small, otherwise the
model may lack variety. Meanwhile, the dropout rate should
not be too large either due to the risk of under-fitting in this
case.

At test time, as opposed to the standard dropout method,
where dropout is turned off, in the Monte Carlo dropout
method, dropout is still performed, we can therefore draw
different prediction samples by performing a number of
stochastic forward passes through the network and use the
averaged results as the final predictions.

Note that inference via recurrent architectures can be
more time-consuming than simple feedforward layers, and in
real-world traffic speed forecasting scenarios, the inference
time should not be too large. Hence, in the proposed model,
we only perform Monte Carlo dropout on the regressor layers
instead of the spatial and temporal feature extractors, which
can reduce the inference time significantly while still main-
taining forecasting performance.

2) Aleatoric Uncertainty: As opposed to epistemic uncer-
tainty, aleatoric uncertainty cannot be reduced because it is
caused by sensor noise or natural randomness. There are two
types of aleatoric uncertainties, namely, homoscedastic and
heteroscedastic, where the former is input-invariant and the
latter is input-dependent. Here, we focus on heteroscedastic
uncertainty. While aleatoric uncertainty cannot be reduced,
it can be statistically learned. We address the issue of het-
eroscedastic uncertainty quantification following the approach
proposed in [6].

To this end, we assume that the prediction for each
node is a Gaussian distribution N

(
µ, σ

)
, whose mean µ

and variance σ can be learned by two neural networks,
µW (xi , A) and σW (xi , A), respectively. However, it is hard
to optimize the model parameters W directly according to
the probability density function of the Gaussian distribution

1
σW (xi ,A)

√
2π

e−
1
2 (

yi−µW (xi ,A)
σW (xi ,A)

)2 . Alternatively, one can maximize
the following log likelihood of the Gaussian distribution:

log p(yi |µW (xi , A), σW (xi , A))

= log(
1

σW (xi , A)
√

2π
e−

1
2 (

yi−µW (xi ,A)
σW (xi ,A)

)2
)

= log(
1

σW (xi , A)
√

2π
)+ log(e−

1
2 (

yi−µW (xi ,A)
σW (xi ,A)

)2
)

= −
1
2

log(σW (xi , A)2)−
1
2

log(2π)−
(yi − µW (xi , A))2

2σW (xi , A)2
.

(9)

Consequently, we use the negative log likelihood as the loss
function following Eq. (9). Compared to conventional neural
network-based models using mean squared error (MSE) as the
training loss without aleatoric uncertainty quantification, the
training loss function regarding aleatoric uncertainty in our
approach is

LAleatoric =
1
N

N∑
i=1

1
2σ(xi , A)2

||yi − µ(xi , A)||2

+
1
2

log σ(xi , A)2. (10)

If both epistemic and aleatoric uncertainty are taken into
account, according to Eqs. (8) and (10), we have the following
loss function:

LCombined =
1
N

N∑
i=1

1
2σ(xi , A)2

||yi − µ(xi , A)||2

+
1
2

log σ(xi , A)2 +
λ

2p
||w||2. (11)

D. Recursive Dependency

Since the output of the forecasting model is sequential, it is
necessary to take into account the dependencies within the
prediction sequences. In terms of multi-step traffic prediction,
predictions on previous steps affect the subsequent steps.
To this end, instead of using simple fully connected layers
to compute the multi-step prediction directly, we design a
specialized uncertainty-aware regressor to produce sequential
output in a recursive manner.

Let τ be the prediction length. For taking previous predic-
tions into account when calculating the uncertainty, we define

x̂t+τ ∼ p(x̂t+τ |zt , ẑt+τ−1), (12)

where x̂t+τ is the prediction at the time point t + τ , zt is the
hidden states learned from the historical input sequence xt ,
ẑt+τ−1 are the previously predicted hidden states:

ẑt+τ−1 = gω(x̂t+τ−1, A), (13)

where gω is a GCN layer parameterized by ω to capture the
spatial relationship in x̂t . By combining Eqs. (12) and (13),
we have the following regressor for computing the sequential
predictions:

x̂t ∼ p(x̂t |zt ), (14a)
x̂t+τ ∼ p(x̂t+τ |zt , gω(x̂t+τ−1, A)) when τ > 1. (14b)

Note that when the forecasting step τ is 1, the recursive
regressor is reduced to the regressor proposed in Section IV-C.

1) Teacher Forcing: During the training procedure, we can
utilize the ground truth as the input to compute ẑt+T−1 in
selective prediction steps with respect to the dropout proba-
bility to improve the training process. This method is referred
to as teacher forcing [39]. When we use teacher forcing during
training, the actual previous value are employed to guide the
prediction process:

x̂t+τ ∼ p(x̂t+τ |zt , gω(xt+τ−1, A)). (15)
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Otherwise, we use the predicted previous values to compute
the future steps:

x̂t+τ ∼ p(x̂t+τ |zt , gω(x̂t+τ−1, A)). (16)

Naturally, at test time, teacher forcing is disabled because we
do not have access to the ground truth anymore.

E. Offline Training and Online Inference

The training and inference procedures of our proposed
method are summarized in Algorithms 1–3, respectively.

1) Training Procedure: Algorithm 1 presents the training
procedure of the proposed method. At the first stage of training
procedure, the input sequence xt passes through the GCN
layers gθ along with the adjacent matrix A to obtain the
spatial features zt . Then we use the GRU module fφ to
calculate the future spatial state zt+τ . Afterwards, if we want
to quantify the epistemic uncertainty, arbitrarily selected nodes
of a set of fully connected layers fψ are dropped out with
respect to a certain probability; if we want to quantify the
aleatoric uncertainty as well, both the predictive mean µt+τ
and predictive variance σt+τ are computed, and accordingly
µt+τ is used as the predicted value of x̂t+τ . Moreover, if the
recursive dependency between the predictions is considered,
we let the previous prediction xt+τ−1 pass through a GCN
layer gw to capture the spatial features, and use the condi-
tional probability p(x̂t+τ |zt+τ , gω(µt+τ−1, A)) to obtain the
prediction x̂t+τ when the teacher forcing technique is not
adopted. Otherwise, we let the ground truth value xt+τ−1 pass
through the GCN layer, and use the joint conditional prob-
ability p(xt+τ |zt+τ , gω(µt+τ−1, A)) to obtain the prediction
x̂t+τ . Finally, the loss function is computed to optimize the
parameters of the model according to the uncertainty type we
choose.

Algorithm 1 Offline Model Training
Require: dataset {X}; model parameters θ , φ, ψ , ω; predicting
length T .

1: while epoch < max epoch:
2: zt ← gθ (xt , A); {via GCN}
3: zt+τ ← fφ(zt ); {via GRU}
4: if epistemic uncertainty:
5: Apply dropout to fψ ;
6: if aleatoric uncertainty:
7: µt+τ , σt+τ ← fψ (zt+τ−1);
8: else:
9: µt+τ ← fψ (zt+τ );

10: if recursive dependency:
11: if Teacher forcing:
12: x̂t+τ ← p(x̂t+τ |zt+τ , gω(xt+τ−1, A));
13: else:
14: x̂t+τ ← p(x̂t+τ |zt+τ , gω(µt+τ−1, A));
15: else:
16: x̂<t+τ ← µt+τ ;
17: Compute loss: Eq. 8 (epistemic uncertainty) or Eq. 10

(aleatoric uncertainty) or Eq. 11 (combined uncertainty)
18: end while

2) Regular Inference: Algorithm 2 demonstrates the infer-
ence procedure without including epistemic uncertainty.
In order to attain the spatial features zt , we feed the input
sequence xt to the GCN layers gθ along with the adjacent
matrix A, and then the next spatial state zt+τ is calculated
via the GRU module fφ . Afterwards, the predictive mean
µt+τ is used as the value of the prediction x̂t+τ . Furthermore,
if the recursive dependency between the predictions is con-
sidered, we let the previous prediction xt+τ−1 pass through
the GCN layer gw, and use the joint conditional probability
p(x̂t+τ |zt , gω(µt+τ−1, A)) to obtain the prediction x̂t+τ .

Algorithm 2 Regular Online Model Inference
Require: dataset {X}; model parameters θ , φ, ψ , ω; predicting
length T .

1: while inferring:
2: zt ← fθ (X<t , A); {via GCN}
3: zt+τ ← fφ(zτ ); {via GRU}
4: if aleatoric uncertainty:
5: µt+τ , σt+τ ← fψ (zt+τ );
6: else:
7: µt+τ ← fψ (zt+τ );
8: if recursive dependency:
9: x̂t+τ ← p(x̂t+τ |zt+τ , gω(µt+τ−1, A));

10: else:
11: x̂t+τ ← µt+τ .
12: end while

3) Monte Carlo Inference: Algorithm 3 demonstrates
the inference procedure involving epistemic uncertainty.
As opposed to the regular reference in Algorithm 2, we need
to let the input sequence xt pass through the model multiple
times to do the Monte Carlo simulation. Since the Monte Carlo
simulation is time-consuming, we can compute the future
spatial state ẑt+τ in a deterministic manner through the GCN
and GRU modules to accelerate inference. Then we can run
the Monte Carlo simulation for NMC times, each run of which
generates the prediction following Algorithm 2. After finishing
Monte Carlo simulation, we average the obtained Monte Carlo
samples as the final prediction.

V. EXPERIMENTS

To validate UAT-GCN, our proposed method is first
compared with current state-of-the-art models in terms
of point-wise speed forecasting performance. Subsequently,
we verify the proposed model’s capability of uncertainty
quantification. Lastly, we analyze the computational cost of
UAT-GCN.

A. Dataset Description

We employ two public traffic speed datasets, the SZ-taxi
dataset and the Los-loop dataset [14], to compare the per-
formance of UAT-GCN with existing methods. The SZ-taxi
dataset consists of 156 road segments and the spatial inter-
actions among those roads are represented by an 156 ×
156 adjacency matrix. The temporal speed features of the
SZ-taxi dataset are collected every 15min. The Los-loop
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Algorithm 3 Monte Carlo Online Model Inference
Require: dataset {X}; model parameters θ , φ, ψ , ω; predicting
length T ; Monte Carlo sample number NMC .

1: while inferring:
2: zt ← gθ (X<t , A); {via GCN}
3: zt+τ ← fφ(zt ); {via GRU}
4: for i in range(NMC ) :
5: Apply dropout to fψ ;
6: if aleatoric uncertainty:
7: µi

t+τ , σ i
t+τ ← fψ (zt+τ );

8: else:
9: µi

t+τ ← fψ (zt+τ );
10: if recursive dependency:
11: x̂ i

t+τ ← p(x i
t+τ |zt+τ , gω(µi

t+τ−1, A));
12: else:
13: x̂ i

t+τ ← µi
t+τ ;

14: x̂t+τ ←
1

NMC

∑NMC
i=1 x̂ i

t+τ .
15: end while

dataset consists of 207 sensors, and the dimension of the
adjacency matrix describing the spatial interactions among
the sensors is 207× 207. The temporal speed features of the
Los-loop dataset are collected every 5min.

B. Experiment Setup

Our aim is to use 1 hour historical traffic speed recoding
for forecasting the next 15min, 30min, 45min and 60min
traffic speed, respectively. Therefore, for the SZ-taxi dataset,
the input sequence length is 4, and the predicting sequence
lengths are 1, 2, 3 and 4, respectively. For the Los-loop dataset,
the input sequence length is 12, and the predicting sequence
lengths are 3, 6, 9 and 12, respectively. The data of these
two datasets are split into two parts, where 80% of the data
are used for training and the remaining 20% are used for
testing. In terms of data pre-processing, the input data are
scaled into [0, 1] by a min-max scaler to feed the models.
The training batch size is 64; the optimizer we use is Adam
with the learning rate of 0.001 and weight decay of 10−6;
the total training epoch is 3, 000; the dropout rate is 0.2;
the number of the Monte Carlo samples for evaluating the
epistemic uncertainty is 1000; the Teacher Forcing rate is 0.5,
which determines the probability of performing the Teacher
Forcing operation during training.

C. Models

1) Baseline Models: We use the following state-of-the-art
methods as the baseline models for comparisons:
• Graph Convolutional Network (GCN) [11], which con-

siders only the spatial dependency;
• Gated Recurrent Unit (GRU) [12], which considers only

the temporal dependency;
• Temporal Graph Convolutional Network (TGCN) [14],

which considers the spatio-temporal dependency by com-
bining GCN and GRU;

• Graph-WaveNet (GWN) [15], which considers the
spatio-temporal dependency by combining GCN and
WaveNet [16];

• Spatio-Temporal Graph Convolutional Network
(STGCN) [14], which considers the spatio-temporal
dependency by combining GCN and GRU;

• Attention based Spatial-Temporal Graph Convolutional
Network (ASTGCN) [18], which leverages attention
mechanism to model spatio-temporal correlations for traf-
fic prediction;

• Multivariate Time Series Forecasting with Graph Neural
Networks (MTGNN) [40], which consists of a graph
learning moduel, a mix-hop propagation layer, and a
dilated inception layer.

2) Proposed Models: Besides the proposed UAT-GCN,
we also develop alternative models for ablation tests and for
comparison against the aforementioned baselines:
• UAT-GCN/E considers the spatio-temporal dependency as

well as epistemic uncertainty;
• UAT-GCN/A considers the spatio-temporal dependency

as well as aleatoric uncertainty;
• UAT-GCN/R additionally includes the recursive depen-

dency of UAT-GCN.

D. Evaluation Metrics

We adopt the following metrics for evaluation:
1) Root Mean Squared Error (RMSE):

RM SE =

√√√√√ 1
N M

N∑
i=1

M∑
j=1

(ŷ j
i − y j

i )
2, (17)

where N is the number of the datapoints and M is number
of the road segments, y is the ground truth, and ŷ is the
prediction.

2) Mean Absolute Error (MAE):

M AE =
1

N M

N∑
i=1

M∑
j=1

∣∣∣ŷ j
i − y j

i

∣∣∣ . (18)

3) Mean Absolute Percentage Error (MAPE):

M AP E =
1

N M

N∑
i=1

M∑
j=1

∣∣∣ŷ j
i − y j

i

∣∣∣
y j

i

. (19)

4) Accuracy:

Accuracy = 1−
||Ŷ − Y ||F

YF
, (20)

where Y denotes the set of y j
i and Ŷ denotes the set of ŷ j

i .
5) Coefficient of Determination (R2):

R2
= 1−

∑N
i=1

∑M
j=1(ŷ

j
i − y j

i )
2∑N

i=1
∑M

j=1(ŷ
j

i − Ȳ )2
, (21)

where Ȳ is the average of y j
i .
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TABLE I
PREDICTION RESULTS ON THE SZ-TAXI DATASET

TABLE II
PREDICTION RESULTS ON THE LOS-LOOP DATASET

6) Explained Variance Score (Variance):

V ariance = 1−
V ar(Ŷ − Y )

V ar(Y )
. (22)

Smaller RMSE and MAE means better performance while
larger accuracies, coefficients of determination and explained
variance scores are better.

E. Experiment Results
1) Point-wise Forecasting Results: The prediction results

on the SZ-Taxi and Los-loop datasets are reported in
Table I and II, respectively. The best results are highlighted in
bold. Some of the results are reported from [41].

According to the results demonstrated in Tables I and II,
we can see that all spatio-temporal models, including TGCN,
Graph-WaveNet, STGCN, UAT-GCN and its variants,
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outperform the spatio-only baseline GCN, and the
temporal-only baseline GRU. This suggests that it is
necessary to capture both the temporal and spatial features
for traffic prediction. Additionally, the prediction results also
indicate that our models capturing epistemic uncertainty are
superior than other state-of-the-art methods. Furthermore, the
performance of the proposed model can be further improved
if we take both the epistemic uncertainty and the aleatoric
uncertainty into account.

In addition, compared to T-GCN, the RMSE and MAE of
the proposed model considering both epistemic and aleatoric
uncertainty on the SZ-taxi dataset are reduced by 2.15% and
7.23%, respectively; the RMSE and MAE of the proposed
model considering both the epistemic and aleatoric uncertainty
on the Los-loop dataset are reduced by 4.17% and 8.53%,
respectively. This is due to the fact that by capturing both
data-related and the model-related uncertainty, UAT-GCN has
better generalization ability compared to existing deterministic
approaches. The main reason why the model’s performance
on the Los-loop dataset is better than on the SZ-taxi dataset is
that the latter contains more noisy information than the former,
which consequently makes the uncertainty quantification tasks
more challenging.

2) Recursive Prediction Results: Table III demonstrates the
prediction results when we consider the recursive dependency
between the prediction steps. According to Table III, when the
prediction step is 1, i.e., the forecasting horizons 15 min, UAT-
GCN/R has the same the architecture as the vanilla UAT-GCN.
When the prediction horizons get larger, e.g., 45 min, 60 min,
75 min, and 90 min, considering the recursive dependency
further improves the prediction performance.

3) Uncertainty Quantification Results: For evaluation,
Quantile Regression [23], Mean-Variance Estimation
(MVE) [22], MC Dropout [9], and Deep Ensembling [30]
are compared to the proposed methods. We use the mean
test predictive intervals (PI), mean test predictive Gaussian
negative log-likelihoods (NLL), and test Prediction Interval
Coverage Probability (PICP) to evaluate the uncertainty
quantification performance [42]. The predicted lower and
upper bounds of the prediction interval are ŷL and ŷU , and
the significance level is set to 95%. Let k j

i indicate whether
the real speed value of a road segment j at time i is captured
by the estimated prediction interval:

k j
i =

{
1, if ŷL

j
i ≤ y j

i ≤ ŷU
j
i

0, else.
(23)

The total number of the captured data points is

C =
N∑

i=1

M∑
j=1

k j
i , (24)

hence the PICP can be defined as

P I C P =
C

N M
. (25)

The test uncertainty quantification results on the SZ-taxi
dataset and the Los-loop dataset are illustrated in Table IV.
As can be observed from the results, the models considering

TABLE III
PREDICTION RESULTS ON THE SZ-TAXI DATASET CONSIDERING

RECURSIVE DEPENDENCY

aleatoric uncertainty, i.e., Quantile regression, MVE, UAT-
GCN/A and UAT-GCN, can capture more datapoints but has
larger negative log-likelihoods compared to the Epistemic
ones. On the contrary, the proposed UAT-GCN considering
both epistemic and aleatoric uncertainty has the lowest mean
negative log-likelihoods and largest PCIP, developing the best
performance on uncertainty quantification.

Fig. 4 and Fig. 5 show the visualized uncertainty quantifica-
tion results (including the epistemic uncertainty, the aleatoric
uncertainty and the combined uncertainty) of an arbitrarily
selected road segment selected from the SZ-taxi dataset and
the Los-loop dataset, respectively. The aleatoric uncertainty
represents the data noise and the process’s randomness within
the traffic speed data, while the epistemic uncertainty repre-
sents the uncertainty of the prediction means raised by data
sparsity.

It is clear from the figures that the proposed model can
not only forecast the traffic speed accurately but also achieve
desirable coverage proportions. From the results shown in
Tables I–IV, it can be seen that the improvements of the
proposed method are two-fold, i.e., the proposed method can
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TABLE IV
TEST UNCERTAINTY QUANTIFICATION RESULTS (HORIZON: 60 MINUTES, MONTE CARLO SAMPLE NUMBER: 1, 000)

TABLE V
COMPUTATION TIME ON THE SZ-TAXI DATASET (HORIZON: 60 MINUTES,

MONTE CARLO SAMPLE NUMBER: 50)

TABLE VI
TEST RMSE, TEST MAE AND INFERENCE TIME W.R.T. DIFFERENT

MONTE CARLO SAMPLE NUMBERS (HORIZON: 60 MINUTES)

improve the point prediction performance and provide predic-
tive distribution estimation compared to existing methods.

4) Computation Time and Ablation Study:
a) Computation time: The computation time of the

best-performing baselines TGCN, Graph-WaveNet, STGCN,
and the proposed models are illustrated in Table V. From
the statistics, we can see that the training time of our model
is marginally longer than the TGCN model, and is notably
smaller than Graph-WavaNet and STGCN. As for the inference
time, compared to other existing approaches, the proposed
models involving epistemic uncertainty take more time due to
the Monte Carlo simulations, but the step-wise inference time
is 0.82 ms, which is still acceptable for real-world applications.

b) Effect of monte carlo sample number: Table VI
illustrates the inference time with respect to various Monte
Carlo sample numbers on both datasets. From the reported
RMSE and MAE results, it can be seen that we can obtain
relatively good results just a few Monte Carlo samples, e.g.,
50, reduce the inference time. The performance converges
when the sample number approaches 1, 000.

c) Comparison of different sampling methods: We also
compare two different sampling methods for Monte Carlo
simulation, namely the one proposed in Algorithm 3 (Fast
method) and running Mote Carlo simulation by letting the
input pass through the whole model architecture (Regular

TABLE VII
COMPARISON OF DIFFERENT SAMPLING METHODS (HORIZON:

60 MINUTES, MONTE CARLO SAMPLE NUMBER: 1, 000)

Fig. 4. Uncertainty quantification results on the SZ-taxi dataset with the
prediction horizon of 60 minutes. (a) Epistemic uncertainty. (b) Aleatoric
uncertainty. (c) Combined uncertainty.

method). From the results demonstrated in Table VII, the
second inference method is much more time consuming but
does not increase the performance significantly. This result
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TABLE VIII
ABLATION STUDY OF DIFFERENT DROPOUT RATES ON SZ-TAXI DATASET

Fig. 5. Uncertainty quantification results on the Los-loop dataset with the
prediction horizon of 60 minutes. (a) Epistemic uncertainty. (b) Aleatoric
uncertainty. (c) Combined uncertainty.

indicates that for our model, a large number of stochastic
layers in a deep spatio-temporal model may be redundant for
Bayesian approximation, and thereby increase the inference
time drastically. In contrast, the devised architecture can be
regarded as a shallow BNN, which uses only a few stochastic
layers at the end of the model to perform stochastic approxi-
mation. The weights of non-stochastic layers of the GCN and
GRU modules in our model can be regarded as both prior
of and posterior parameters for variational inference to some
extent. While the last few dropout layers in the proposed model
can yield sufficient epistemic/model uncertainty and reduce
the inference time significantly by avoid passing through the
GRU modules multiple times, which is particularly beneficial
for potential future practical applications.

TABLE IX
TEST RESULTS UNDER ROAD CONGESTION

d) Effect of different dropout rates: From the experimen-
tal results shown in Table VIII, it can be seen that when
the dropout rate is too small (0.1), the model’s uncertainty
estimation performance decreases; when the dropout rate is
too large (0.5), the model’s point prediction performance
decreases.

e) Performance under road congestion: To test the
proposed method’s performance under traffic congestion,
we conduct the corresponding study. The congestion thresh-
olds for the SZ-taxi and Los-loop datasets are under 30 km/h
and under 50 mi/h, respectively. From the results shown in
Table IX, we can see that the proposed method still has relative
good performance under traffic congestion.

VI. CONCLUSION

In this paper, we introduce a novel uncertainty-aware
deep learning model for traffic speed forecasting, namely,
Uncertainty-Aware Temporal Graph Convolutional Network
(UAT-GCN). In the proposed model, the spatial characteristics
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are modelled by a Graphical Convolutional Network and
the temporal features are captured by a Gated Recurrent
Unit, respectively. Particularly, we devise an uncertainty-aware
regressor to estimate the prediction uncertainty. The proposed
model is capable of estimating both data-related and model-
related uncertainty, i.e., epistemic and aleatoric, respectively.
We use Monte Carlo dropout to compute the epistemic uncer-
tainty and the predictive mean and variance to estimate the
aleatoric uncertainty. We validate the proposed UAT-GCN on
two traffic speed datasets, and the obtained results suggest that
our approach outperform state-of-the-art methods.

In future work, we plan to explore the possibility of
integrating other deep learning techniques into our model,
e.g, attention mechanism and graph structure learning, to fur-
ther enhance the model. Additionally, relevant meterological
features, e.g., weather, can also be included to improve the
forecasting performance. Moreover, we plan to explore the
potential of the proposed method for anomaly and outlier
detection through aleatoric uncertainty estimation. We will
also explore other techniques, e.g., adversarial learning and
Bayesian variational learning, to enhance the robustness of
uncertainty quantification methods against noise.
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