
Uncertainty Quantification for Traffic Forecasting: A
Unified Approach

Weizhu Qian1, Dalin Zhang1, Yan Zhao1,* , Kai Zheng2, James J.Q. Yu3

1Aalborg University, Denmark
2University of Electronic Science and Technology of China, China

3Southern University of Science and Technology, China
{wqian, dalinz, yanz}@cs.aau.dk, zhengkai@uestc.edu.cn, yujq3@sustech.edu.cn

Abstract—Uncertainty is an essential consideration for time
series forecasting tasks. In this work, we specifically focus on
quantifying the uncertainty of traffic forecasting. To achieve this,
we develop Deep Spatio-Temporal Uncertainty Quantification
(DeepSTUQ), which can estimate both aleatoric and epistemic
uncertainty. We first leverage a spatio-temporal model to model
the complex spatio-temporal correlations of traffic data. Subse-
quently, two independent sub-neural networks maximizing the
heterogeneous log-likelihood are developed to estimate aleatoric
uncertainty. For estimating epistemic uncertainty, we combine the
merits of variational inference and deep ensembling by integrating
the Monte Carlo dropout and the Adaptive Weight Averaging
re-training methods, respectively. Finally, we propose a post-
processing calibration approach based on Temperature Scaling,
which improves the model’s generalization ability to estimate
uncertainty. Extensive experiments are conducted on four public
datasets, and the empirical results suggest that the proposed
method outperforms state-of-the-art methods in terms of both
point prediction and uncertainty quantification.

Index Terms—traffic forecasting, uncertainty quantification,
variational inference, deep ensembling, model calibration

I. INTRODUCTION

Traffic forecasting is one of the essential elements in modern
Intelligent Transportation Systems (ITS). The predicted data,
including but not limited to traffic flow, speed, and volume,
can help municipalities manage urban transportation more
efficiently. In terms of traffic forecasting, the road segments in
a road network interact with each other spatially and the current
state of a road segment depends on previous states, which
results in complicated spatio-temporal correlations. Modelling
the spatial-temporal correlations of traffic data is non-trivial
[1]–[7].

Thanks to the recent advances of deep learning techniques,
a number of deep learning-based spatio-temporal models have
been proposed in the field of traffic forecasting [8], [9]. Since
the topology of a typical road network can be described by a
graph in which each node represents a sensor and each edge
represents a road segment, the spatial dependency of traffic
data can be naturally extracted by Graph Neural Networks
(GNNs) [10]. Correspondingly, the temporal dependency of
traffic data can be modelled by Convolutional Neural Networks

*Corresponding author: Yan Zhao.

(CNNs), Recurrent Neural Networks (RNNs), or their numerous
variants [1], [3]–[5].

Despite the fact that existing methods regarding traffic
forecasting have been shown successful [9], most of them
only provide deterministic traffic prediction without quan-
tifying uncertainty — a critical component in traffic data.
While uncertainty quantification can be used to estimate the
possible minimum and maximum values of the predicted traffic
flow, speed, and volume. Such reliability information can be
imperative for municipalities to manage urban traffic system in
some critical real-world scenarios (e.g., emergency rescue and
disaster evacuation) where unreliable point forecasting may lead
to catastrophic consequences [11]. Moreover, traffic forecasting
models with uncertainty quantification can be used to develop
proactive intelligent traffic control systems to prevent possible
future traffic congestion.

For this reason, we aim to attain both future traffic forecasting
and its corresponding uncertainty in this paper. More specifi-
cally, the research goal includes the estimation of both epistemic
and aleatoric uncertainties, which refer to model uncertainty
and data uncertainty, respectively. Aleatoric uncertainty can be
obtained by two independent neural networks by estimating
means and variances, respectively [12]. As for epistemic
uncertainty, both variational inference and ensembling are
possible solutions. However, these two types of approaches
both have their own limitations. Variational approaches, e.g.,
Bayesian Neural Networks (BNNs) [13], are prone to modal
collapse [14]. Deep ensembling is capable of finding multiple
local minimums by training a set of deterministic models,
but the prediction of each trained deterministic model lacks
diversity [14]. To circumvent this problem, it needs to find a set
of local minimums/solutions with certain amount of diversities.

To this end, we carefully design an epistemic uncertainty
quantification method having the merits of both variational
inference and deep ensembling. Due to the high flexibility and
efficiency of Monte Carlo dropout (MCDO) [15], we adopt it
as the variational inference method. To implement MCDO in
the proposed approach, we placed the dropout operations in the
base model by careful design to ensure the model performance.
Despite the success of Stochastic Weight Averaging (SWA) [16]
on approximating deep ensembling, we find that the original

SWA method cannot guarantee the convergence of the training
process of the traffic forecasting tasks. In this light, we propose
a new re-training method, called Adaptive Weight Averaging
(AWA), to better approximate deep ensembling. Compared
with SWA that uses SGD for training, AWA utilizes a new
learning rate scheduler with Adam, which can approximate
deep ensembling more efficient on traffic forecasting. In
practice, we found that the original SWA method cannot
guarantee the convergence of the training process of the traffic
forecasting tasks. In addition, a post-processing calibration
method proposed to mitigate the overfitting issue in uncertainty
quantification. The calibration method we proposed is an variant
of Temperature Scaling [17], where we adapt it to Gaussian
likelihood loss functions for multivariate time series forecasting
tasks. We design the above building blocks to tackle different
aspects of the uncertainty quantification problem, achieving an
effective and efficient traffic forecasting framework. Finally, a
unified uncertainty quantification approach called Deep Spatio-
Temporal Uncertainty Quantification (DeepSTUQ) is formu-
lated for both epistemic and aleatoric uncertainty estimation.
Compared to existing approaches, DeepSTUQ has the following
advantages: 1) DeepSTUQ can predict future traffic while
provide both epistemic and aleatoric prediction uncertainty,
and 2) DeepSTUQ requires training only one single model,
which as a result, is fast-training, low-memory-footprint, and
fast-inferring.

The contributions of this paper can be summarized as
follows:

• We propose a unified method that can estimate both the
epistemic and aleatoric uncertainties in traffic forecasting.

• We propose a novel training approach combining the
advantages of variational inference and deep ensembles
for epistemic uncertainty quantification.

• We propose a post-processing model calibration method
that further improves the performance of uncertainty
quantification.

• Extensive experiments are conducted on four public
datasets, and the obtained results show that DeepSTUQ
surpasses state-of-the-art methods in terms of both point
prediction and uncertainty quantification.

II. RELATED WORK

Our work relates to traffic forecasting regarding its applica-
tion and uncertainty quantification regarding the methodology.
Thus, we review the state-of-the-art methods from these two
aspects in this section.

A. Spatio-Temporal Traffic Forecasting

Traffic data can be regarded as multivariate time series.
Hence, for traffic forecasting tasks, both spatial and temporal
correlation are critical data features to learn from. In terms
of spatial correlations, Graph Neural Network, such as Graph
Convolutional Networks (GCNs) [18], ChebNet [19], and Graph
Attention Networks (GATs) [20] have become the de facto
deep learning techniques. As for temporal dependency, deep
architectures like Gated Recurrent Networks (GRUs) [21],

Gated Convolutional Neural Networks (GCNNs) [22], and
WaveNet [23] have been widely applied to traffic prediction.
Base on these two types of methods, a number of deep
spatio-temporal models have been proposed in the context,
such as Diffusion Convolutional Recurrent Neural Network
(DCRNN) [1], Temporal Graph Convolutional Network (T-
GCN) [24], Spatio-Temporal Graph Convolutional Networks
(ST-GCN) [2], and GraphWaveNet [3]. Those methods are
capable of learning spatio-temporal correlations but fail to
capture multi-scale or hierarchical dependency.

More recently, Li et al. [25] proposed Spatial-Temporal
Fusion Graph Neural Network (STFGNN), in which a spatial-
temporal fusion graph module and a gated dilated CNN module
were used to capture local and global correlations simultane-
ously. Zheng et al. [26] proposed Spatial-Temporal Graph
Diffusion Network (ST-GDN) that adopted a hierarchical graph
neural network architecture and a multi-scale attention network
to learn spatial dependency from local-global perspectives
and multi-level temporal dynamics, respectively. Additionally,
Attention Mechanism has been applied to address this issue
as well. For instance, Attention-based Spatial-Temporal Graph
Convolutional Network (ASTGCN) [6] uses spatial attention
and temporal attention to model the spatial patterns and
dynamic temporal correlations, respectively.

Nevertheless, in a practical real-world case where the
knowledge of a graph is missing, the physical road connectivity
may not necessarily represent the real data correlation in a
graph. It is therefore beneficial to learn the graph structure
from the data. To this end, methods such as Multivariate
Time Series Forecasting with Graph Neural Network (MT-
GNN) [27] and Adaptive Graph Convolutional Recurrent
Network (AGCRN) [5] can learn the unknown adjacency
matrix in a data-driven manner and consequently improve
the prediction performance. However, all those aforementioned
methods only focus on providing point estimation without
computing prediction intervals.

B. Uncertainty Quantification

Uncertainty quantification has recently been an actively
researched area and widely applied to solve various real-world
problems [28], [14]. In general, uncertainty can be classified
into two categories, namely, aleatoric and epistemic.

Aleatoric uncertainty refers to the data uncertainty caused by
noise or intrinsic randomness of processes, which is irreducible
but can be computed via predictive means and variances [29]
using negative log-Gaussian likelihood as the loss function.
Epistemic uncertainty refers to model uncertainty caused by
data sparsity or lack of knowledge, which is learnable and
reducible. A widely-used method for estimating epistemic
uncertainty is Bayesian Neural Networks (BNNs) [13], [30],
in which a Gaussian distribution is imposed on each weight to
generate model uncertainty. However, a typical BNN doubles
the number of model parameters and requires to compute the
Kullback-Leibler (KL) divergence explicitly [31], which raises
the model complexity and slows down the training process.
Alternatively, a simple approach called Monte Carlo (MC)

dropout [15] performs Bayesian approximation by turning on
dropout at both training and test time as opposed to standard
dropout [32].

Apart from Bayesian methods, ensembling-based approaches
can be applied to uncertainty quantification as well [33], [34].
However, vanilla ensembling methods is time and memory
consuming because it is required to train and store multiple
models. To address this issue, Fast Geometric Ensembling
(FGE) [35] and Stochastic Weight Averaging (SWA) [16] are
proposed, which use varying learning rates during training to
find different local minimums. In addition, model calibration
methods such as Temperature Scaling [17] are also used to
estimate prediction uncertainty.

Although uncertainty quantification has been quite popular
in many deep learning domains, such as Computer Vision [29],
Medical Imaging [28] and Reinforcement Learning [14], it
is less explored in traffic prediction. Wu et al. [36] analyzed
different Bayesian and frequentist uncertainty quantification
approaches for spatio-temporal forecasting. They figured that
Bayesian methods were more robust in point prediction whilst
frequentist methods provided better coverage over ground truth
variations.

In this paper, we specifically study the uncertainty quan-
tification problem for spatio-temporal traffic prediction. The
proposed approach is based on the spatio-temporal architecture
[5] and combines Monte Carlo dropout, Adaptive Weight
Averaging re-training, and model calibration to provide both
point prediction and uncertainty estimation surpassing current
state-of-the-arts.

III. PROBLEM STATEMENT

Traffic data can be regarded as multivariate time series. Let
xt ∈ RN be the values of all the sensors in a road network
at time t, and X<t = {xt−Th+1, xt−Th+2, . . . , xt} ∈ RN×Th

be the corresponding historic input sequence with Th steps.
Similarly, X̂>t = {xt+1, xt+2, . . . , xt+τ} ∈ RN×τ represents
the prediction sequence, where τ denotes the prediction horizon.
Fig. 1 describes the spatio-temporal correlation modelling

v1

v3 v2

xt+2

v1

v3 v2

xt+1

v1

v3 v2

xt

Tim
e

…

Fig. 1: Spatio-temporal dependency modelling for traffic data, where
grey lines and green dash lines represent spatial and temporal
dependency, respectively.

problem in traffic forecasting. Instead of treating the forecasting
as deterministic, we aim to compute a conditional distribution
to predict the traffic flow as well as the prediction uncertainty
X̂>t ∼ P (X̂>t|X<t), which can improve the accuracy of the

prediction, enhance the generalization ability of the model, and
provide uncertainty estimation as well.

Although multi-modality and seasonality in traffic data do
exist [6], for computational convenience, we do not consider
multi modality or seasonality, and consequently treat the
predictive distribution of each node at each time point as
a conditional uni-variate Gaussian distribution. Since the task
in this paper is a high dimensional multivariate time series
forecasting problem, using complex likelihood assumptions
is computationally difficult in practice. The Gaussianity as-
sumption for aleatoric uncertainty is a common assumption
and computationally stable for regression tasks [12], [29],
[33], [37]. (Note that if this assumption does not hold, the
prediction intervals may not cover the expected number of the
future ground truth datapoints with respect to given significance
level. Fortunately, the empirical results in the following section
support the Gaussian likelihood assumption.) To this end,
P (X̂>t|X<t) can be represented by a set of predictive mean-
variance pairs. As a result, the problem is cast as follows:

θ = argmax
θ

N∑
i=1

logN (X̂i
>t; µ̂θ(X

i
<t), σ̂θ(X

i
<t)

2), (1)

where θ is the model parameters, N is the number of total
training data points, N denotes the Gaussian likelihood, µ̂(X<t)
and σ̂(X<t)

2 represents the estimated mean and variance,
respectively.

IV. DEEP SPATIO-TEMPORAL UNCERTAINTY
QUANTIFICATION

We first briefly give an overview of the proposed Deep
Spatio-Temporal Uncertainty Quantification (DeepSTUQ). The
DeepSTUQ model architecture is illustrated in Fig. 2, which
follows the principle of [5]. This architecture includes an
encoder and a decoder sub-neural network. The encoder is
composed of a GCN and a GRU module to capture both the
spatial and temporal dependencies, respectively. To estimate
the aleatoric uncertainty, the decoder employs two independent
convolutional layers computing means and variances, respec-
tively. Moreover, dropout operations are deployed in both sub-
networks to estimate the epistemic uncertainty.

In terms of model training, conventional training procedures
are only capable of providing uni-modal solutions, which lacks
diversity for quantifying uncertainty [14]. To address this issue,
a three-stage training method is proposed, which can be briefed
as follows.

• Stage 1: Pre-train the base spatial-temporal model with
dropout on the training dataset to perform variational
learning;

• Stage 2: Re-train the pre-trained model on the training
dataset to proceed ensemble learning;

• Stage 3: Calibrate the re-trained model on the validation
dataset to further improve the aleatoric variance estimation.

In the following sections, we will introduce DeepSTUQ in
detail.

Xt

ht-1

ht

Â

GRU
module

DropoutGCN
module

Adap2ve learning

Dropout
layers

Output
layers

μt+1

σt+1Encoder

Decoder

Fig. 2: Architecture of DeepSTUQ.

A. Spatial Dependency

1) Graph Convolution: A typical road network consists of
a number of road segments. The spatial relationships within a
road network with NR road segments can be described through
a graph G(V, E), where the nodes V = {v1, v2, v3, · · · , v|V|}
denote the sensors and the edges E denotes the road segment.
A ∈ R|V|×|V| is the corresponding adjacency matrix. Subse-
quently, GCN [18] is utilized to model the spatial relationships
of the traffic data. The output of the l-th GCN layer, Z(l+1),
can be computed by

Z(l+1) = f(Z(l), A), (2)

where Z(l) is the input. More specifically, GCN first uses a
degree matrix D to avoid changing the scale of feature vectors
by multiplying it with A. Afterwards, an identity matrix I is
used to sum up the neighboring nodes of a node as well as
the node itself. As a result, the propagation rule of GCN is
described as follows:

Z(l+1) = S
(
(I +D− 1

2AD− 1
2)Z(l)W (l) + b(l)

)
, (3)

where W (l) is the weight matrix, b(l) is the bias, and S is an
activation function, e.g., sigmoid function.

2) Graph Structure Learning: In many real-world cases,
we do not have the real spatial correlation knowledge of the
multivariate traffic data. In such cases, the graph structure needs
to be learned from data. To this end, the adaptive learning
approach proposed in [5] is adopted to directly generate Â =
D− 1

2AD− 1
2 , which is easier than generating the adjacency

matrix during the training process. Particularly, Â is developed
by

Â = softmax
(
ReLU(EET)

)
, (4)

where E ∈ R|V|×d (the embedding dimension d ≪ |V|) is
a learnable matrix representing the embedding of the nodes
and softmax function is to normalize the learned matrix.
To facilitate the graph learning process, the Node Adaptive
Parameter Learning (NAPL) module [5] is also utilized to
reduce the computational cost. As a result, Equation (3)
becomes

Z(l+1) = S
(
(I + Â)Z(l)EW (l)

g + Eb(l)g

)
. (5)

B. Temporal Dependency

Apart from the spatial dependency, the temporal dependency
of traffic data also needs to be captured. To this end, the
aforementioned graph convolutional operations and adaptive
graph learning module are integrated into a Gated Recurrent
Unit (GRU) [21]. Subsequently, the obtained spatio-temporal
model can be formulated as follows:

zt = S
(
(I + Â)[xt, ht−1]EWz + Ebz

)
, (6a)

rt = S
(
(I + Â)[xt, ht−1]EWr + Ebr

)
, (6b)

ct = tanh
(
(I + Â)[xt, rt ⊙ ht−1]EWc + Ebc

)
, (6c)

ht = zt ⊙ ht−1 + (1− zt)⊙ ct, (6d)

where z stands for the update gate, r stands for the reset
gate, h denotes the hidden state, [·] denotes the concatenation
operation, c denotes the memory cell, W and b represent the
weights and bias, respectively.

Finally, the model introduced in Equation (6) serves as the
spatio-temporal architecture in DeepSTUQ. Note that though
the above base model is employed in this work, DeepSTUQ has
the potential to be applied to other spatial-temporal structures as
well. In the following sections, we explain how to leverage this
base model to forecast traffic and quantify the corresponding
forecasting uncertainty.

C. Uncertainty Quantification

Generally, uncertainty can be classified into two types,
i.e., epistemic and aleatoric. The former represents model
uncertainty, while the latter represents data uncertainty. If
variance is used to render uncertainty, the total uncertainty
can be decomposed and approximated as follows:

σ2
Total ≈ Eθ∼p(θ)[σ

2
θ]︸ ︷︷ ︸

Aleatoric uncertainty

+ Vθ∼p(θ)[µθ]︸ ︷︷ ︸
Epistemic uncertainty

, (7)

where p(θ) stands for a probability distribution over the model
parameters θ, σ2

θ and µθ refer to predicted variance and mean,
respectively.

1) Aleatoric Uncertainty: Aleatoric uncertainty is caused
by the intrinsic randomness of data, which is irreducible but
learnable [28]. Based on Equation (7), we assume that the
lower and upper bounds of the forecasting are symmetric
due to the regressive nature of the prediction. Subsequently,
the distribution of a sensor’s value, e.g., traffic flow, at each
time point can be modeled by a Gaussian distribution with
predicted mean µ(x) and variance σ(x)2. However, directly
maximizing the predictive Gaussian likelihood is numerically
unstable. Instead we choose to maximize the following log-
likelihood:

log p(y|µ(x), σ(x))

= − 1

2
log(σ(x)2)− 1

2
log(2π)− (y − µ(x))2

2σ(x)2
, (8)

where log(σ(x)2) and µ(x) are obtained directly via two
independent neural networks.

In practice, to accelerate the training process and ensure
convergence, we devise the following weighted loss by adding
an L1 loss as the regularization term based on Equation (8):

LAleatoric =
1

N

N∑
i=1

λ
{
log(σ(xi)

2) +
(yi − µ(xi))

2

σ(xi)2
}

+ (1− λ)|yi − µ(xi)|, (9)

where λ is the relative weight with 0 < λ ≤ 1.
2) Epistemic Uncertainty: Epistemic uncertainty represents

model uncertainty, which arises from that lack of data or
model mis-specification. Fortunately, as opposed to aleatoric
uncertainty, epistemic uncertainty can be reduced by estima-
tion.There are two general classes of approaches to do so:
Bayesian variational inference and deep ensembling. However,
they both have their pros and cons. Fig. 3 illustrates the
relationships between different solutions and corresponding
model performance. The solid and dashed lines represent
the model performance during training and testing processes,
respectively. The green line and blue dots represent the
performance that can be obtained by variational inference and
deterministic model, respectively. As it can be seen from the
figure, deep ensembling can find a set of different deterministic
model parameters (local minimums), e.g., W1, W2, and W3,
which may have equally good performance in the solution
space [38]. On the other hand, variational inference can find
a set of sub-optimal solutions near one local minimum in the
loss space. However, it may fail to find other local minimums,
which potentially leads to modal collapse. Therefore, a better
way is to explore as many as local minimums as well as their
corresponding nearby solutions. To this end, we propose to
combine deep ensembling and variational inference to estimate
epistemic uncertainty.

Deep ensembles

Space of Solu+ons

Variational inference Testing

Deterministic

Training

Lo
ss

W1 W2 W3

Fig. 3: Performance demonstration of deterministic model, deep
ensembles, and variational inference in solution space.

Variational Inference. Let D = {X,Y } be the training
dataset. From a Bayesian perspective, we assume each weight
parameter of the neural network w obeys a probabilistic
distribution to represent model uncertainty, e.g., Gaussian
distribution. However, in practice, the true posterior of the
the neural network weights p(w|D) is intractable. Therefore,

a variational distribution q(w) is used to approximate p(w|D).
Accordingly, the optimization goal is to minimize the following
Kullback-Leibler (KL) divergence:

DKL(q(w)||p(w|D))

=

∫
q(w) log

q(w)

p(w)p(D|w)
dw,

= DKL(q(w)||p(w))− Ew∼q(w)[log p(D|w)], (10)

where p(w) is the prior and log p(D|w) is the predictive log-
likelihood.

To solve Equation (10), MCDO [15] is adopted as it performs
Bayesian approximation in a simple and flexible manner. The
variational distribution q(w) formulated in MC dropout can be
described as follows. Let Wi be a matrix of shape Kj ×Kj−1

for layer i, we have

q(Wi) = Mi · (diag[zi,j]Ki
j=1), (11a)

zi,j ∼ Bernoulli(pi) (11b)

where Wi denotes the masked weight matrices, pi is dropout
rate used in both the training and testing processes (as opposed
to standard dropout), Mi is the parameters of the neural network
in the i-th layer , and zi,j is a binary variable indicating whether
unit j at layer i− 1 (as the input of layer i) is dropped. As a
result, minimizing Equation (10) is equivalent to minimizing
the following loss function:

LDropout = Ew∼q(w)E[Y, fW (X)] +DKL(q(w)||p(w)),

≈ 1

N

N∑
i=1

E(yi, f(xi, wi)) +
λW

2pi
||wi||2, (12)

where E is the loss function, e.g., Root Mean Squared Error
(RMSE) or Mean Absolute Error (MAE), λW is the weight
decay, and λW

2p ||w||2 can be computed through applying the
L2 regularization during the training process.

In terms of implementation, dropout operations are deployed
at two places within the spatial-temporal model: the graph con-
volutional layers in the encoder and the dropout convolutional
layers in the decoder. Therefore, Equation (5) becomes

Z(l+1) = sigmoid
(
M ⊙

(
(I + Â)Z(l)EW (l)

g + Eb(l)g

))
.

(13)

Note that the dropout rate here should be small when the
adjacency matrix dimension is small, and vice versa.

Combined Uncertainty. Finally, Equations (12) and (9) are
combined to estimate both aleatoric and epistemic uncertainty
jointly. The combined loss function is formulated by

LCombined =
1

N

N∑
i=1

λ
{
log(σ(xi)

2) +
(yi − µ(xi))

2

σ(xi)2
}

+ (1− λ)|yi − µ(xi)|+
λW

2p
||w||2. (14)

Equation (14) is utilized to pre-train the spatio-temporal model
in DeepSTUQ .

Deep Ensembling. In contrast to variational inference, deep
ensembling aims to find a set of different local minimums
and averages the output of each trained model as the final
prediction. Deep ensembling is shown to be quite effective in
practice, yet it is computationally expensive as multiple models
are trained [33]. FGE [35] tackles this issue by using cycling
learning rate to produce a set of different trained models in one
learning process. However, FGE still needs to store multiple
models for inference, which may result in high memory cost.
To address this issue, SWA [16] adjusts the learning rate and
averages the weights during the learning process to generate
only one trained model to approximate FGE. In SWA, the
model parameters are updated by

wSWA =
wSWA · nmodels + w

nmodels + 1
, (15)

where wSWA is the parameters of the SWA model and nmodels
is the number of averaged models during training.

W3 W2

W1

Adam

Adam

WAWA

Epoch n
Epoch n+1

Fig. 4: Demonstration of relationship between test MAEs and model
weights during AWA re-training.

Inspired by SWA, we devise a re-training method called
Adaptive Weight Averaging (AWA) to approximate deep
ensembling. As depicted in Fig. 4, we vary the learning rate
during the re-training process to find different local minimums,
and average those local minimums in the final stage to attain
better solutions. The proposed AWA re-training approach
includes two steps. Let the re-training learning rate be lr,
the maximum learning rate be lr1, the minimum learning
rate be lr2, niteration be the total iteration number within each
epoch/total batch number, then the learning rate at ni iteration
changes according to the following rules. The first step is to
enable the trained model to escape from the current local
minimum. To this end, the learning rate of the optimizer
decreases from lr1 to lr2 via a cosine learning rate scheduler
at epoch n. The scheduler is described by

lr = lr2 +
1

2
(lr1 − lr2)

(
1 + cos(

niteration

ni
π)
)
. (16)

Following that, the model is fine tuned by using the constant
learning rate lr2 at epoch n+ 1, then at the end of the epoch
the model parameters are averaged according to Equation (15)
and perform batch normalization. Specifically, we find that in
practice using Adam as the optimizer works more effectively
than using Stochastic Gradient Decent (SGD) which is adopted
in the original SWA method. The learning rate change during
the AWA re-training is illustrated in Fig. 5. The whole re-
training process is summarized in Algorithm 1.

0 200 400 600 800 1000
Iteration Number

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Le
ar

ni
ng

 R
at

e

Fig. 5: Learning rate change during the AWA re-training, each black
dot indicates the start of a new epoch.

Algorithm 1 AWA Re-training Method
Require: training dataset {X}; pre-trained model parame-
ters w; AWA model parameters wAWA; learning rates lr1
and lr2; total epoch epochAWA; total iteration/batch number
niteration.

1: while epoch < epochAWA:
2: while n < niteration:
3: compute the loss function according to Equation (14)

and update w;
4: if epoch // 2 = 0:
5: lr decreases from lr1 to lr2 according to Equation

(16);
6: else: lr = lr2;
7: end while
8: if epoch // 2 = 0 and epoch ̸= 0:
9: update wAWA according to Equation (15);

10: perform batch normalization.
11: end while
12: Return wAWA

At test time, we quantify the epistemic uncertainty by
drawing multiple Monte Carlo samples from the learnt posterior
distribution, then use the means and variances of the samples
as the predictive mean and variances, respectively.

3) Model Calibration: To prevent the uncertainty estimation
of the trained models being overconfident on the training
dataset, it is necessary to calibrate the trained model on the
validation dataset with post-processing.

To this end, a positive learnable variable T is imposed on the
learned variance. Subsequently, the following log-likelihood

similar to Equation (8) is maximized:

log p(y|µ(x), σ(x)/T)

= log(
T

σ(x)
√
2π

e−
1
2 ((

T (y−µ(x))
σ(x)

)2)

= − 1

2
log(

σ(x)2

T 2
)− 1

2
log(2π)− T 2(y − µ(x))2

σ(x)2

=
1

2
log(T 2)− 1

2
log(σ(x)2)− T 2(y − µ(x))2

2σ(x)2
− 1

2
log(2π),

(17)

where T is the only learnable parameter. Accordingly, the
calibration objective is

T = argmin
T

1

N

N∑
i=1

− log(T 2) +
T 2(yi − µ(xi))

2

σ(xi)2
, (18)

where µ(xi) and σ(xi)
2 can be obtained via one deterministic

forward pass or Monte Carlo estimation. The limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) is
used as the optimizer to find the optimal value of T .

D. Proposed Unified Approach
Finally, combining the spatio-temporal correlation modelling

method, Monte Carlo dropout, AWA re-training, and model
calibration, the proposed unified uncertainty quantification
method can be summarized as follows.

• First, the spatio-temporal model introduced in Section
IV-A and IV-B is pre-trained using Equation (14) as the
training loss function on the training dataset to estimate
the aleatoric and epistemic uncertainty;

• Afterwards, the pre-trained model is re-trained via the
AWA method on the training dataset to approximate deep
ensembling;

• Finally, the predicted σ2 obtained via the re-trained
model on the validation dataset is calibrated according to
Equation (18).

The graphical probabilistic model representation of Deep-
STUQ is visualized in Fig. 6. The figure shows that ht

is extracted from xt via a spatio-temporal structure with a
learnable variable Â. The model weights are drawn repeatedly
to estimate the epistemic uncertainty, which is implemented in
an efficient manner by using MCDO and AWA. The variance
σ(xi)

2 and mean µ(xi) are obtained via NMC Monte Carlo
samples. Finally, σ(xi)

2 is calibrated through learning an
auxiliary variable T .

At test time, according to Equation (7), we draw NMC

Monte Carlo samples to estimate the predictive mean µ̂t+1 and
variance σ̂2

t+1 by

µ̂t+1 =
1

NMC

NMC∑
j=1

µj(xt), (19a)

σ̂2
t+1 =

1

T

NMC∑
j=1

σj(xt)
2

NMC
+

NMC∑
j=1

(
µj(xt)− µ̂t+1

)2
NMC − 1

, (19b)

where µ̂t+1 is used as the point prediction of the proposed
approach.

xt

W

N

M

xt̂+1

μt+1σt+1

NMC

Â

ht

T

Fig. 6: Graphical model representation of DeepSTUQ, where shaded
circles represent observable variables, arrows denote dependencies,
variables within rectangles appear repeatedly, NMC is the number of
Monte Carlo samples, and M is the number of models for ensembling.

V. EXPERIMENTS

To compare the performance of DeepSTUQ with other state-
of-the-arts, extensive experiments are conducted on real-world
datasets in terms of point prediction, uncertainty quantification,
and ablation study.

A. Datasets

Four different public datasets collected from the Caltrans
Performance Measurement System (PEMS), i.e., PEMS03,
PEMS04, PEMS07, and PEMS08 [4] are used for evaluation.
The traffic flow data aggregated to 5 minutes. For prediction,
one-hour historic data (12 data points) is utilized to predict
the next’s (12 data points). All the datasets are split into three
parts with ratio 6 : 2 : 2 for training, validation/calibration, and
testing, respectively. Table I summarizes the statistics of the
four datasets.

TABLE I: Dataset statistics.

Dataset # of Nodes # of Edges # of Steps

PEMS03 358 547 26, 208

PEMS04 307 340 16, 992

PEMS07 883 866 28, 224

PEMS08 170 295 17, 856

B. Settings

Pre-training. The total number of training epochs is 100.
The optimizer is Adam with learning rate 0.003 and weight
decay 10−6. The batch size is 64. The relative weight λ in
Equation (9) for computing the aleatoric uncertainty is 0.1.
The dropout rates of the graph convolutional operations in
the encoder are 0.1 for PEMS03, PEMS04, and PEMS07 (the
adjacency matrice are relatively large), and 0.05 for PEMS08
(the adjacency matrix is relatively small). The dropout rate at
the final dropout layer in the decoder for all the datasets is
0.2.

AWA Re-training. The optimizer of the AWA re-training
process is Adam, and the maximum and minimum learning
rates are 0.003 and 0.00003, respectively. The total number
of re-training epochs is 20, which means that 10 models are
averaged.

Model Calibration. The number of Monte Carlo samples
for calculating σ2 is 10. The steps and numbers of iterations
of the L-BFGS optimizer are 0.02 and 500, respectively.

Inference. To balance the inference time and model per-
formance, we generate 10 Monte Carlo samples for Bayesian
approximation.

C. Baselines

To compare the proposed DeepSTUQ with state-of-that-arts
on point prediction and uncertainty quantification, two groups
of recent traffic prediction methods are adopted as the baselines,
respectively.

1) Point Prediction Baselines:
• DCRNN [1] adopts diffusion convolution and sequence-

to-sequence learning;
• GraphWaveNet (GWN) [3] adopts a self-adaptive adja-

cency matrix and dilated casual convolution.
• ST-GCN [2] utilizes a GNN and a GCNN to forecast

traffic;
• ASTGCN [6] employs Attention mechanism to model

spatio-temporal dependency;
• STSGCN [4] forecasts traffic by synchronously extracting

spatial-temporal correlations;
• STFGNN [25] employs a spatial-temporal fusion module

and a gated dilated CNN;
• AGCRN [5] leverages a Node Adaptive Parameter Learn-

ing module and a Data Adaptive Graph Generation module
to enhance traffic prediction performance;

• DeepSTUQ/S refers to the proposed method with single
deterministic forward pass (dropout is turned off at test
time).

2) Uncertainty Quantification Baselines: Representative ap-
proaches of different uncertainty estimation paradigms (namely,
frequentist, quantile prediction, Bayesian, and ensembling) are
used as the baselines. Note that all the following methods
employ the same base model structure for fair comparison.

• Point prediction refers to the AGCRN model which is
used here to compare with other uncertainty quantification
methods;

• Quantile regression [39] is a distribution-free method
which directly computes the mean, lower and upper bounds
using the corresponding quantile (0.025, 0.5, 0.975);

• Mean Variance Estimation (MVE) [12] refers to the
method that estimates heterogeneous aleatoric uncertainty
through computing Equation (9);

• Monte Carlo dropout (MCDO) [15] performs dropout at
both training and test time, the number of Monte Carlo
samples for inference is 10;

• Combined refers to the method that calculates both
epistemic and aleatoric uncertainty using Equation (14)

[29], the number of Monte Carlo samples for inference is
10;

• Temperature Scaling (TS) [17] calibrates the aleatoric
uncertainty obtained by MVE;

• Fast Geometric Ensembling (FGE) [35] performs fast
ensembling via varying the learning rate, the number of
the stored trained models is 10;

• Locally Weighted Conformal Inference [40], [41] cal-
ibrates the aleatoric uncertainty obtained by MVE via
conformalization;

• Conformal Forecasting Recurrent Neual Network
(CFRNN) [42] computes the multi-horizon uncertainty
using conformal prediction;

D. Metrics
Two groups of metrics are employed to evaluate the point

prediction and uncertainty quantification performance, respec-
tively.

1) Point Prediction Metrics: The point traffic forecasting
performance are evaluated by the following metrics.
(a) Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2, (20)

where yi is the ground truth, and ŷi is the prediction.
(b) Mean Absolute Error (MAE):

MAE =
1

N

N∑
i=1

|ŷi − yi| . (21)

(c) Mean Absolute Percentage Error (MAPE):

MAPE =
1

N

N∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ . (22)

2) Uncertainty Quantification Metrics: The uncertainty
quantification performance are evaluated by the following
metrics.
(a) Mean Negative Log-Likelihood (MNLL):

MNLL =
1

N

N∑
i=1

− logN (yi; µ̂i, σ̂
2
i), (23)

where µ̂i and σ̂2
i are the predicted mean and predicted

variance, respectively.
(b) Prediction Interval Coverage Probability (PICP). The

predicted lower and upper bounds of the prediction
interval are denoted by ŷL and ŷU , respectively. Let the
significance level α be 5%, which means that the expected
probability of a ground truth data point falling into the
range [ŷL, ŷU] is 95% (100%− α = 95%). Accordingly,
under Gaussianity assumption, ŷUi

= µ̂i + 1.96σ̂i, and
ŷLi

= µ̂i−1.96σ̂i. Let kji indicate whether the real speed
value of a road segment j at time i is captured by the
estimated prediction interval, and we have

ki =

{
1, if ŷLi ≤ yi ≤ ŷUi

0, else.
(24)

TABLE II: Point prediction results on PEMS03, PEMS04, PEMS07, and PEMS08, where best and second best results are highlighted in bold
and underlined, respectively.

Dataset Metrics DCRNN ST-GCN GWN ASTGCN STSGCN STFGNN AGCRN DeepSTUQ/S DeepSTUQ

PEMS03
MAE 18.18 17.49 19.85 17.69 17.48 16.77 16.05 15.38 15.1315.1315.13

RMSE 30.31 30.12 32.94 29.66 29.21 28.34 28.61 27.03 26.7726.7726.77
MAPE (%) 18.91 17.15 19.31 19.40 16.78 16.30 15.19 14.45 14.0314.0314.03

PEMS04
MAE 24.70 22.70 24.14 22.93 21.19 19.83 19.83 19.42 19.1119.1119.11

RMSE 38.12 35.55 37.60 35.22 33.65 31.88 32.26 32.07 31.6831.6831.68
MAPE (%) 17.12 14.59 17.93 16.56 13.90 13.02 12.97 12.98 12.7112.7112.71

PEMS07
MAE 25.30 25.38 26.85 28.05 24.26 22.07 20.94 20.76 20.3620.3620.36

RMSE 35.58 38.78 42.78 42.57 39.03 35.80 34.98 34.12 33.7133.7133.71
MAPE (%) 11.66 11.08 12.12 19.32 10.21 9.21 8.85 8.90 8.638.638.63

PEMS08
MAE 17.86 18.02 19.13 18.61 17.13 16.64 15.95 15.74 15.4415.4415.44

RMSE 27.83 27.83 31.05 28.16 26.80 26.22 25.22 24.93 24.6024.6024.60
MAPE (%) 11.45 11.40 12.68 13.08 10.96 10.60 10.09 10.31 10.0610.0610.06

Then PICP can be formulated by

PICP =
1

N

N∑
i=1

ki. (25)

Ideally, PICP should be equal or greater than 95%.
(c) Mean Prediction Interval Width (MPIW):

MPIW =
1

N

N∑
i=1

ŷUi − ŷLi . (26)

E. Point Prediction Results

The point prediction results of DeepSTUQ are compared
with the aforementioned state-of-the-art methods first for
performance evaluation. The obtained point prediction results
are demonstrated in Table II. As it can be seen from the results,
with only 10 Monte Carlo samples, DeepSTUQ achieves the
smallest RMSEs, MAEs, and MAPEs, which suggests that
DeepSTUQ has the best performance on point traffic flow
prediction. In addition, the proposed method — even with only
one single deterministic forward pass, namely DeepSTUQ/S —
also outperforms other state-of-the-art methods, which indicates
that the proposed method is competitive on point prediction
at nearly the same inference time cost as other deterministic
approaches. This is because that variational inference can obtain
a set of solutions around on one local minimum, and deep
ensembling can find multiple local minimums in the solution
space. By combining these two approaches, DeepSTUQ is
capable of finding better sub-optimal solutions and have better
generalization ability compared to deterministic methods, and
consequently has better performance regarding point prediction.
Fig. 7 shows the point prediction performance with respect to
different horizons, which suggests that DeepSTUP has better
performance than AGCRN at each time step for all the datasets.

F. Uncertainty Quantification Results

To evaluate the uncertainty quantification performance,
DeepSTUQ is compared with the uncertainty quantification
baselines, whose results are demonstrated in Table III and
Figs. 8–10. According to the results in the table, the proposed
approach has the best overall performance regarding both the

point prediction and uncertainty quantification results compared
with others. As it is observed from Fig. 8, DeepSTUQ can
forecast traffic flow accurately and provide valid coverage
for future ground truth. Fig. 9 illustrates that in traffic flow
forecasting, the aleatoric uncertainty is much larger than the
epistemic uncertainty. Hence, considering total uncertainty
can provide better uncertainty estimation than considering
either one alone. Fig. 10 shows that, for all the datasets,
generally, both aleatoric and epistemic uncertainty increase
as the prediction horizons extend, which implies that short-
term traffic flow forecasting is more reliable than long-term
one. The conclusion accords with the intuition and results in
the literatures [1], [5], [25]

In terms of uncertainty quantification, the aleatoric
uncertainty-aware approaches (i.e., MVE and TS) outperform
the epistemic uncertainty-aware approaches, which suggests
that the traffic uncertainty is mainly data-related. The results
indicate that only considering epistemic uncertainty improves
the estimation of the predictive mean (which results in better
point estimation) but underestimates the variance significantly.
This conclusion is supported by [36] as well. Although we have
made a strong Gaussianity assumption on the likelihood of the
aleatoric uncertainty, the obtained experimental results indicate
that the methods using this assumption (i.e., MVE, Combined,
TS, and DeepSTUQ) outperform the distribution-free method,
Quantile. Additionally, the PICPs obtained by DeepSTUQ on
the four datasets are very close to or larger than 95%, which
implies that the Gaussian distribution assumption is credible.

According to the experimental results, we can also see
that when only the epistemic uncertainty is considered using
variational inference (MCDO) or deep ensembling (FGE), the
traffic flow point prediction performance is improved compared
to deterministic methods but the uncertainty quantification
performance is poor. If merely the aleatoric uncertainty is
taken into account (MVE, TS, Conformal, and CFRNN), the
uncertainty quantification performance is satisfying while the
point prediction slightly decreases compared to deterministic
methods. On the other hand, if both the epistemic and aleatoric
uncertainties are estimated, e.g., Combined and DeepSTUQ,
the point prediction and uncertainty quantification performance

5 10 15 20 25 30 35 40 45 50 55 60
Horizon/minute

12

14

16

18

20

22

24

M
AE

PEMS03
PEMS04

PEMS07
PEMS08

(a)

5 10 15 20 25 30 35 40 45 50 55 60
Horizon/minute

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

RM
SE

PEMS03
PEMS04

PEMS07
PEMS08

(b)

5 10 15 20 25 30 35 40 45 50 55 60
Horizon/minute

6

8

10

12

14

16

18

M
AP

E/
%

PEMS03
PEMS04

PEMS07
PEMS08

(c)

Fig. 7: Point prediction results with respect to various forecast horizons, where solid and dashed lines denote DeepSTUQ and AGCRN,
respectively. (a) MAE. (b) RMSE. (c) MAPE.

TABLE III: Uncertainty quantification results on PEMS03, PEMS04, PEMS07, and PEMS08, the best results are highlighted in bold. The
results are evaluated according to the following criteria. Any PICP ≥ 95% is the best and the smallest corresponding MPIW is the best. If all
the PICP < 95%, then the largest PICP is the best. MPIW only assessed when the corresponding PICP ≥ 95%.

Dataset Metrics Point Quantile MVE MCDO Combined TS FGE Conformal CFRNN DeepSTUQ

PEMS03

MAE 16.05 16.06 15.97 15.23 15.29 15.97 15.23 15.97 16.05 15.1315.1315.13
RMSE 28.61 28.40 28.17 26.95 27.13 28.17 26.99 28.17 28.61 26.7726.7726.77

MAPE(%) 15.19 15.50 15.08 14.39 14.60 15.08 14.36 15.08 15.19 14.0314.0314.03
MNLL − − 3.53 12.32 3.39 3.49 25.94 3.53 − 3.383.383.38

PICP(%) − 89.49 92.06 43.92 93.64 93.51 31.15 93.21 93.00 94.7594.7594.75
MPIW − 65.60 74.04 19.73 73.26 79.79 12.81 76.72 82.79 76.91

PEMS04

MAE 19.83 20.08 19.86 19.15 19.23 19.86 19.0819.0819.08 19.86 19.83 19.11
RMSE 32.26 32.76 32.30 31.4931.4931.49 31.73 32.30 31.59 32.30 32.26 31.68

MAPE(%) 12.97 13.06 13.25 12.77 12.87 12.97 12.6912.6912.69 13.25 12.97 12.71
MNLL − − 3.71 23.17 3.63 3.70 15.47 3.71 − 3.573.573.57

PICP(%) − 91.87 93.10 34.18 95.1695.1695.16 94.86 42.60 94.33 94.65 95.2395.2395.23
MPIW − 91.72 102.97 17.30 108.44 115.48 21.95 109.74 118.83 105.42105.42105.42

PEMS07

MAE 20.94 21.28 21.07 20.61 20.37 21.07 20.42 21.07 20.94 20.3620.3620.36
RMSE 34.98 35.76 34.94 34.20 33.6433.6433.64 34.94 34.13 34.94 34.98 33.71

MAPE(%) 8.85 8.95 8.88 8.73 8.68 8.88 8.622 8.88 8.85 8.638.638.63
MNLL − − 3.80 9.88 3.603.603.60 3.78 22.31 3.80 − 3.603.603.60

PICP(%) − 91.83 93.86 53.74 95.8095.8095.80 95.5395.5395.53 38.05 94.78 94.65 95.7495.7495.74
MPIW − 96.63 112.99 31.16 112.36 127.00 19.03 118.79 118.83 111.68111.68111.68

PEMS08

MAE 15.95 16.40 16.29 15.87 15.51 16.29 15.79 16.29 15.95 15.4415.4415.44
RMSE 25.22 25.79 25.71 25.05 24.64 25.71 24.96 25.71 25.22 24.6024.6024.60

MAPE(%) 10.09 10.56 10.36 10.0510.0510.05 10.14 10.36 10.17 10.36 10.09 10.06
MNLL − − 3.63 11.77 3.45 3.62 11.58 3.63 − 3.443.443.44

PICP(%) − 93.95 94.79 49.91 95.8895.8895.88 97.1597.1597.15 50.15 95.3795.3795.37 95.1695.1695.16 95.6595.6595.65
MPIW − 82.13 93.13 23.53 91.45 113.34 23.57 96.94 96.34 89.6389.6389.63

are both improved.

G. Ablation Study

Three groups of experiments are conducted to verify the
effects of the proposed AWA training, the proposed model
calibration method, and different numbers of Monte Carlo
samples, respectively.

1) Effect of AWA Re-training: The prediction performance
of the same pre-trained model prior to and following AWA post-
processing re-training are compared. Table IV demonstrates
that after AWA training, the point prediction performance has
improved, indicating that the proposed AWA training method
can approximate the deep ensembling method using only one

single model with mere 20 additional epochs. Therefore, com-
pared to conventional deep ensembling, DeepSTUQ requires
less time and memory.

2) Effect of Model Calibration: The uncertainty quan-
tification performance of the same model before and after
applying the calibration method are compared. From the results
illustrated in Tables V and III (results of MVE and TS), it can
be seen that the uncertainty quantification performance has
been further improved after model calibration, indicating that
the proposed model calibration method is effective.

3) Effect of Monte Carlo Sample Number: To investigate
how the number of Monte Carlo samples affects the model
performance, the sample number is set to 1, 3, 5, 10 and 15.

0 100 200 300 400
Time/hour

0

50

100

150

200

250

300
Tr

af
fic

 F
lo

w
Ground Truth
Prediction
Uncertainty

(a)

0 100 200 300
Time/hour

0

100

200

300

400

500

Tr
af

fic
 F

lo
w

Ground Truth
Prediction
Uncertainty

(b)

0 100 200 300 400 500
Time/hour

200

400

600

800

1000

Tr
af

fic
 F

lo
w

Ground Truth
Prediction
Uncertainty

(c)

0 100 200 300
Time/hour

100

200

300

400

500

Tr
af

fic
 F

lo
w

Ground Truth
Prediction
Uncertainty

(d)

Fig. 8: Uncertainty quantification results on randomly selected road segments from different datasets. (a) PEMS03. (b) PEMS04. (c) PEMS07.
(d) PEMS08.

0 1 2 3 4 5
Time/hour

250

300

350

400

450

Tr
af

fic
 F

lo
w

Ground Truth
Prediction
Total Uncertainty
Aleatoric Uncertainty
Epistemic Uncertainty

Fig. 9: Quantification results of different uncertainties on partial data
from a randomly selected segment of PEMS08.

As shown in Fig. 11, the performance of the proposed method
enhances as the number of Monte Carlo samples rises, and
only a small number of Monte Carlo samples are required
to provide high prediction performance. The performance
gradually saturates when the sample size approaches 15.
Accordingly, for the trade-off between the model performance
and the inference time cost, the test-time sample number can
be fixed to 10 at test time.

TABLE IV: Ablation study results on AWA training.

Dataset Metrics No AWA AWA

PEMS03
MAE 15.29 15.1315.1315.13

RMSE 27.13 26.7726.7726.77
MAPE(%) 14.60 14.0314.0314.03

PEMS04
MAE 19.23 19.1119.1119.11

RMSE 31.73 31.6831.6831.68
MAPE(%) 12.87 12.7112.7112.71

PEMS07
MAE 20.37 20.3620.3620.36

RMSE 33.6433.6433.64 33.71
MAPE(%) 8.68 8.638.638.63

PEMS08
MAE 15.51 15.4415.4415.44

RMSE 24.64 24.6024.6024.60
MAPE(%) 10.14 10.0610.0610.06

H. Memory Cost and Computation Time

The quantitative results of the memory cost and computation
time on PEMS08 are reported in Table VI. From the results,
it can be seen that DeepSTUQ has the almost same model
sizes and training times as the Point prediction model, which
is significantly smaller than the standard Deep Ensembles.
The inference time and memory cost of DeepSTUQ are lightly
larger than standard Deep Ensembles, but the inference time per
step is less than 7.80 ms. Therefore, DeepSTUQ is scalable for
large traffic forecasting datasets and applicable for the potential
practical applications.

5 10 15 20 25 30 35 40 45 50 55 60
Horizon/minute

16

18

20

22

24

26

28

30

Al
ea

to
ric

 U
nc

er
ta

in
ty

PEMS03
PEMS04

PEMS07
PEMS08

(a)

5 10 15 20 25 30 35 40 45 50 55 60
Horizon/minute

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Ep
ist

em
ic

Un
ce

rta
in

ty

PEMS03
PEMS04

PEMS07
PEMS08

(b)

Fig. 10: Uncertainty quantification results with respect to different horizons. (a) Aleatoric uncertainty. (b) Epistemic uncertainty.

1 3 5 10 15
Monte Carlo Sample Number

13

14

15

16

17

18

19

20

21

22

M
AE

PEMS03
PEMS04

PEMS07
PEMS08

(a)

1 3 5 10 15
Monte Carlo Sample Number

22

24

26

28

30

32

34

36
RM

SE

PEMS03
PEMS04

PEMS07
PEMS08

(b)

1 3 5 10 15
Monte Carlo Sample Number

7

8

9

10

11

12

13

14

15

M
AP

E/
%

PEMS03
PEMS04

PEMS07
PEMS08

(c)

Fig. 11: Prediction results with respect to different numbers of Monte Carlo samples. (a) MAE. (b) RMSE. (c) MAPE.

TABLE V: Ablation study results on model calibration.

Dataset Metrics No Calibration Calibration

PEMS03
MNLL 3.39 3.383.383.38

PICP(%) 94.22 94.7594.7594.75
MPIW 74.51 76.91

PEMS04
MNLL 3.573.573.57 3.573.573.57

PICP(%) 94.90 95.2395.2395.23
MPIW 103.35 105.42105.42105.42

PEMS07
MNLL 3.603.603.60 3.603.603.60

PICP(%) 95.3895.3895.38 95.7495.7495.74
MPIW 108.85108.85108.85 111.68

PEMS08
MNLL 3.45 3.443.443.44

PICP(%) 96.2896.2896.28 95.6595.6595.65
MPIW 94.25 89.6389.6389.63

TABLE VI: Memory cost and computation time on PEMS08 (CPU:
AMD EPYC 7302, GPU: NVIDIA Tesla T4)

.

Point Deep Ensembles DeepSTUQ

Model size (MB) 0.57 5.73 0.75
Training time (s/epoch) 25.46 254.63 29.67
Total inference time (s) 3.30 27.30 33.48
Memory cost (MB) 475.63 1, 063.37 1, 165.78

VI. CONCLUSION

In this paper, we introduce a novel and unified uncertainty
quantification method for traffic forecasting called DeepSTUQ.
The proposed method consists of three components. 1) To
model the aleatoric uncertainty, a hybrid loss function is
used to train a base spatio-temporal model. 2) To model
the epistemic uncertainty, the merits of variational inference
and deep ensembling are combined through the dropout pre-
training and AWA re-training. 3) The model is calibrated on the
validation dataset using a post-processing calibration method
based on Temperature Scaling to further improve the uncertainty
estimation performance. Four distinct public datasets are then
subjected to thorough experiments. The results indicate that
DeepSTUQ outperforms contemporary state-of-the-art spatio-
temporal models and uncertainty quantification methods. One
interesting research direction is to develop methods based
on non-Gaussian assumptions for better modeling aleatoric
uncertainty in traffic forecasting. The other direction is to
develop a temporal graph learning strategy for multi-variate
traffic forecasting, where graph structures can be changed
adaptively according to different timestamps.

REFERENCES

[1] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recur-
rent neural network: Data-driven traffic forecasting,” in International
Conference on Learning Representations, 2018.

[2] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: a deep learning framework for traffic forecasting,” in Proceedings
of the 27th International Joint Conference on Artificial Intelligence, 2018,
pp. 3634–3640.

[3] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet
for deep spatial-temporal graph modeling,” in Proceedings of the 28th
International Joint Conference on Artificial Intelligence, 2019, pp. 1907–
1913.

[4] C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous
graph convolutional networks: A new framework for spatial-temporal
network data forecasting,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 01, 2020, pp. 914–921.

[5] L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive graph
convolutional recurrent network for traffic forecasting,” Advances in
Neural Information Processing Systems, vol. 33, pp. 17 804–17 815,
2020.

[6] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 922–929.

[7] C. Zheng, X. Fan, C. Wang, and J. Qi, “Gman: A graph multi-attention
network for traffic prediction,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 01, 2020, pp. 1234–1241.

[8] M. Veres and M. Moussa, “Deep learning for intelligent transportation
systems: A survey of emerging trends,” IEEE Transactions on Intelligent
transportation systems, vol. 21, no. 8, pp. 3152–3168, 2019.

[9] S. Wang, J. Cao, and P. Yu, “Deep learning for spatio-temporal data
mining: A survey,” IEEE transactions on knowledge and data engineering,
2020.

[10] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A
survey,” arXiv preprint arXiv:2101.11174, 2021.

[11] Z. Wang, T. Xia, R. Jiang, X. Liu, K.-S. Kim, X. Song, and R. Shibasaki,
“Forecasting ambulance demand with profiled human mobility via hetero-
geneous multi-graph neural networks,” in 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 2021, pp. 1751–1762.

[12] D. A. Nix and A. S. Weigend, “Estimating the mean and variance of the
target probability distribution,” in Proceedings of 1994 ieee international
conference on neural networks (ICNN’94), vol. 1. IEEE, 1994, pp.
55–60.

[13] L. V. Jospin, W. Buntine, F. Boussaid, H. Laga, and M. Bennamoun,
“Hands-on bayesian neural networks–a tutorial for deep learning users,”
arXiv preprint arXiv:2007.06823, 2020.

[14] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng,
A. Kruspe, R. Triebel, P. Jung, R. Roscher et al., “A survey of uncertainty
in deep neural networks,” arXiv preprint arXiv:2107.03342, 2021.

[15] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning. PMLR, 2016, pp. 1050–1059.

[16] P. Izmailov, A. Wilson, D. Podoprikhin, D. Vetrov, and T. Garipov,
“Averaging weights leads to wider optima and better generalization,” in
34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018,
2018, pp. 876–885.

[17] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 1321–1330.

[18] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[19] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” Advances in
neural information processing systems, vol. 29, 2016.

[20] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference
on Learning Representations, 2018.

[21] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[22] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling
with gated convolutional networks,” in International conference on
machine learning. PMLR, 2017, pp. 933–941.

[23] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio.” SSW, vol. 125, p. 2,
2016.

[24] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li,
“T-gcn: A temporal graph convolutional network for traffic prediction,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 9,
pp. 3848–3858, 2019.

[25] M. Li and Z. Zhu, “Spatial-temporal fusion graph neural networks for
traffic flow forecasting,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 35, no. 5, 2021, pp. 4189–4196.

[26] X. Zhang, C. Huang, Y. Xu, L. Xia, P. Dai, L. Bo, J. Zhang, and Y. Zheng,
“Traffic flow forecasting with spatial-temporal graph diffusion network,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 17, 2021, pp. 15 008–15 015.

[27] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting
the dots: Multivariate time series forecasting with graph neural networks,”
in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 753–763.

[28] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu,
M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya et al.,
“A review of uncertainty quantification in deep learning: Techniques,
applications and challenges,” Information Fusion, vol. 76, pp. 243–297,
2021.

[29] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep
learning for computer vision?” arXiv preprint arXiv:1703.04977, 2017.

[30] H. Miao, J. Shen, J. Cao, J. Xia, and S. Wang, “Mba-stnet: Bayes-
enhanced discriminative multi-task learning for flow prediction,” IEEE
Transactions on Knowledge and Data Engineering, 2022.

[31] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” in International conference on machine
learning. PMLR, 2015, pp. 1613–1622.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: a simple way to prevent neural networks from overfitting,”
The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958,
2014.

[33] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” Advances in
neural information processing systems, vol. 30, 2017.

[34] A. G. Wilson and P. Izmailov, “Bayesian deep learning and a probabilistic
perspective of generalization,” Advances in neural information processing
systems, vol. 33, pp. 4697–4708, 2020.

[35] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson,
“Loss surfaces, mode connectivity, and fast ensembling of dnns,” Advances
in neural information processing systems, vol. 31, 2018.

[36] D. Wu, L. Gao, X. Xiong, M. Chinazzi, A. Vespignani, Y.-A. Ma, and
R. Yu, “Quantifying uncertainty in deep spatiotemporal forecasting,”
arXiv preprint arXiv:2105.11982, 2021.

[37] L. Zhu and N. Laptev, “Deep and confident prediction for time series at
uber,” in 2017 IEEE International Conference on Data Mining Workshops
(ICDMW). IEEE, 2017, pp. 103–110.

[38] S. Fort, H. Hu, and B. Lakshminarayanan, “Deep ensembles: A loss
landscape perspective,” arXiv preprint arXiv:1912.02757, 2019.

[39] R. Koenker and K. F. Hallock, “Quantile regression,” Journal of economic
perspectives, vol. 15, no. 4, pp. 143–156, 2001.

[40] J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman,
“Distribution-free predictive inference for regression,” Journal of the
American Statistical Association, vol. 113, no. 523, pp. 1094–1111,
2018.

[41] A. N. Angelopoulos and S. Bates, “A gentle introduction to conformal
prediction and distribution-free uncertainty quantification,” arXiv preprint
arXiv:2107.07511, 2021.

[42] K. Stankeviciute, A. M Alaa, and M. van der Schaar, “Conformal time-
series forecasting,” Advances in Neural Information Processing Systems,
vol. 34, pp. 6216–6228, 2021.

	Introduction
	Related Work
	Spatio-Temporal Traffic Forecasting
	Uncertainty Quantification

	Problem Statement
	Deep Spatio-Temporal Uncertainty Quantification
	Spatial Dependency
	Graph Convolution
	Graph Structure Learning

	Temporal Dependency
	Uncertainty Quantification
	Aleatoric Uncertainty
	Epistemic Uncertainty
	Model Calibration

	Proposed Unified Approach

	Experiments
	Datasets
	Settings
	Baselines
	Point Prediction Baselines
	Uncertainty Quantification Baselines

	Metrics
	Point Prediction Metrics
	Uncertainty Quantification Metrics

	Point Prediction Results
	Uncertainty Quantification Results
	Ablation Study
	Effect of AWA Re-training
	Effect of Model Calibration
	Effect of Monte Carlo Sample Number

	Memory Cost and Computation Time

	Conclusion
	References

