
Unsupervised Deep Learning for GPS-Based Transportation Mode
Identification

Christos Markos1, and James J.Q. Yu2, Member, IEEE

Abstract— Intelligent transportation management requires
not only statistical information on users’ mobility patterns,
but also knowledge of their selected transportation modes. The
latter can be inferred from users’ GPS records, as captured
by smartphone or vehicle sensors. The recently demonstrated
prevalence of deep neural networks in learning from data
makes them a promising candidate for transportation mode
identification. However, the massive geospatial data produced
by GPS sensors are typically unlabeled. To address this
problem, we propose an unsupervised learning approach for
transportation mode identification. Specifically, we first pretrain
a deep Convolutional AutoEncoder (CAE) using unlabeled
fixed-size trajectory segments. Then, we attach a clustering
layer to the CAE’s embedding layer, the former maintaining
cluster centroids as trainable weights. Finally, we retrain the
composite clustering model, encouraging the encoder’s learned
representation of the input data to be clustering-friendly by
striking a balance between the model’s reconstruction and clus-
tering losses. By further incorporating features computed over
each segment, we achieve a clustering accuracy of 80.5% on
the Geolife dataset without using any labels. To the best of our
knowledge, this is the first work to leverage unsupervised deep
learning for clustering of GPS trajectory data by transportation
mode.

I. INTRODUCTION

Transportation mode identification is the task of inferring
travelers’ modes of transportation from their mobility data.
Such knowledge can help location-based services provide
users with accurate, personalized information based on their
real-time location [1]. Examples of such services include
posting targeted advertisements on electronic billboards, or
notifying a user when to start their trip in order to reach
their destination on time [1]. On a larger scale, city-wide
knowledge of users’ mobility and transportation mode pat-
terns can be leveraged by intelligent transportation systems to
improve traffic management through travel demand analysis,
route recommendations, and transportation planning [2].

The first step towards transportation mode identification
is acquiring users’ mobility data. Global Positioning Sys-
tem (GPS) sensors are mobile sensors that capture ordered
sequences of timestamped latitude-longitude pairs. Their
presence in most modern smartphones and vehicles offers
the benefit of user proximity, in turn allowing for much

This work is supported in part by the General Program of Guangdong
Basic and Applied Basic Research Foundation No. 2019A1515011032 and
in part by Guangdong Provincial Key Laboratory No. 2020B121201001.
(Corresponding author: James J.Q. Yu.)

The authors are with the Guangdong Provincial Key Laboratory of Brain-
inspired Intelligent Computation, Department of Computer Science and
Engineering, Southern University of Science and Technology, Shenzhen,
China. Christos Markos is also with the Faculty of Engineering and
Information Technology, University of Technology Sydney, Australia.

broader path coverage than traditional fixed-point sensors.
Nonetheless, inferring users’ transportation modes based
solely on GPS trajectory data is a challenging problem, as
GPS sensors can only record spatiotemporal characteristics
of user movement without any explicit information on the
utilized travel modes. Moreover, users may be reluctant to
annotate their trips with such information due to privacy
concerns or lack of motivation.

To build a model that can extract useful knowledge from
the available GPS data, earlier work relied extensively on
intuition to transform raw trajectory data into suitable rep-
resentations for training machine learning models. Several
studies have used Bayesian networks [3], decision trees
[4], [5], random forests [6], and support vector machines
[7], to name a few. Such approaches are limited not only
by the significant domain expertise needed, but also the
fact that fundamental features such as relative distance and
velocity are prone to GPS measurement errors and traffic
or environmental conditions [5]. The recent state-of-the-art
performance of deep learning models in challenging fields
such as computer vision [8] and natural language processing
[9] has consequently attracted significant interest in the
field of transportation mode identification. Researchers have
successfully used multilayer perceptrons [10], recurrent neu-
ral networks [11], and convolutional neural networks [12],
[13], among others. Still, the literature has not addressed
the problem of inferring transportation modes from strictly
unlabeled GPS data.

To address this problem, and given that traditional clus-
tering algorithms such as K-means do not perform well with
high-dimensional data [14], unsupervised deep learning is
considered as a promising solution. This involves training
deep neural networks without the guidance of any labeled
samples. For instance, autoencoders [15] are typically trained
to encode their input in such a way that it can then be
reconstructed at their output layer with low error. By def-
inition, however, autoencoders merely attempt to minimize
the reconstruction error between the input and output data.
This does not necessarily mean that the trained encoder will
always produce similar embeddings for similar inputs, i.e.,
clustering-friendly representations [16], [17].

As such, a recent body of literature has proposed several
deep clustering methods using deep neural networks. Some
studies pretrain an autoencoder on the input data and then
cluster the lower-dimensional learned embeddings by only
optimizing the clustering loss. In [18], agglomerative clus-
tering is applied to autoencoder-learned features. Another
seminal work [19] first pretrains a denoising autoencoder

and then replaces the decoder with a custom clustering layer.
Instead, [14] replaces it with a soft K-means layer and
retrains the model using samples of increasing clustering
difficulty. More recent approaches have reported better re-
sults by jointly optimizing the clustering and autoencoder
reconstruction losses. In contrast to [19], the decoder is
preserved in [20] to reduce distortion of the learned feature
space, while [17] instead computes the clustering loss using
the mean squared error and performs separate updates to
the network parameters, clusters, and centroids. DeepCluster
[21] iteratively groups the neural network’s output using K-
means and sets the resulting cluster assignments as training
labels to update its parameters. While these approaches have
reported promising results on image and text data, as far as
we are concerned, deep clustering approaches have not yet
been applied to GPS trajectory data for transportation mode
identification.

In this work, we propose unsupervised deep learning for
GPS-based transportation mode identification. To this end,
we first use fixed-size trajectory segments to pretrain a deep
Convolutional AutoEncoder (CAE). We then attach a clus-
tering layer to the CAE’s embedding layer, the former main-
taining cluster centroids as trainable weights, as proposed
by [20]. Finally, we retrain the composite clustering model,
encouraging the learned representation of the input data to be
clustering-friendly by striking a balance between the model’s
reconstruction and clustering losses. To provide the model
with additional information, we also incorporate features
corresponding to mobility-related statistics computed over
each segment. We report a clustering accuracy of 80.5%
on the Geolife dataset [4], [5] without using any labels. To
the best of our knowledge, this is among the pioneer efforts
to cluster GPS trajectory data by transportation mode using
unsupervised deep learning.

The rest of this paper is structured as follows. Section II
contains the problem formulation and introduces the Geolife
dataset. Section III describes the proposed methodology,
including the proposed data preprocessing techniques, the
global features which we extracted to improve clustering
performance, and the clustering model components. Section
IV presents the simulation setup and experimental results on
two case studies, and finally, Section V concludes this paper.

II. PROBLEM FORMULATION

Before delving into the specifics of the proposed method-
ology, we first establish the necessary definitions and formu-
late the problem of clustering GPS trajectory segments by
transportation mode. We then introduce Geolife, the dataset
that we used to validate our approach.

A. Clustering GPS Trajectory Segments

We consider a set of GPS trajectories T , where each Ti ∈
T is a sequence Ti = {pj}Li

1 of length Li and pj is a GPS
point, defined as a tuple of timestamp, latitude, and longitude.
A trajectory can be split into multiple trips, during which a
traveler may use several modes of transportation. In order
to cluster by transportation mode, we must further divide
trips into segments such that each segment involves only a

single transportation mode. For each Ti, we therefore extract
the set of nonoverlapping same-mode segments Si = {sk}N1
composed of N subsequences si = {pk}Lsi ∈ Ti with Lsi ≤
Li. We note that, in the absence of labels, trip segmentation
is a nontrivial task. Such algorithms have been proposed in
the literature; for instance, [12] used a discrete optimization
algorithm to detect transportation mode changes along GPS
trajectories with high fidelity. Nonetheless, as unsupervised
trip segmentation is not the focus of our work, we leverage
the available labels to divide trips into segments of the same
transportation mode as in [4].

Using latitude and longitude pairs as features to train
a clustering model could be problematic. Intuitively, the
clustering model would have to be retrained whenever a user
moved to a location that the model had not seen before.
To this end, we instead compute local, point-level motion
features including velocity, acceleration, and jerk for each
GPS point pj in a segment. We also capture global, segment-
level features such as average velocity and stop rate for
each segment si, as will be described in Section III. We
thereby process T into a dataset S = {si}n1 of n same-mode
segments, with each point in a segment being described by
a vector of motion features.

Given S, we view the problem of clustering each segment
into K < n clusters through the scope of optimizing a
clustering objective function. Specifically, the objective is to
partition S into K disjoint clusters C = {ci}K1 such that the
probability distance between a “true” distribution of encoded
segments (over C) and an estimated auxiliary distribution are
minimized. We refer the reader to Section III for a detailed
explanation of the proposed approach.

B. Dataset

This study is evaluated on the Geolife dataset by Microsoft
Asia Research [4], [5], which has been widely used for GPS-
based trajectory research. It contains 17,621 GPS trajectories
by 182 users obtained over five years, the majority of which
were collected in Beijing, China at a sampling rate of 1−5
seconds. Out of those users, only 69 have labeled parts of
their trajectories by transportation mode.

The main transportation modes include walking, bike, bus,
car, taxi, train, subway and airplane. Following the dataset
authors’ recommendations, we treat cars and taxis as a
single class, “driving”, and trains and subways as “train”. As
typically done in the literature [4], [5], [12], we only retain
the classes for which there are sufficient samples, namely
“walk”, “bike”, “bus”, “driving”, and “train”. Note that labels
are only used for trip segmentation and clustering evaluation.

III. PROPOSED METHODOLOGY

In this section, we first detail our data preprocessing
techniques, including feature extraction, outlier removal, fea-
ture normalization, and segmentation into fixed-size chunks
suitable for training the proposed CAE. We then introduce
global, segment-level features, and describe the CAE used
to learn a lower-dimensional representation of the input data.
Finally, we specify the clustering layer as well as the loss

functions that integrate it with the CAE to produce the
composite clustering model.

A. Data Preprocessing and Local Features
The Geolife dataset consists of timestamped GPS trajecto-

ries, i.e., tuples of dates and times, latitudes, and longitudes.
These trajectories contain various trips and transportation
modes. As such, we first perform trip segmentation, ex-
tracting a new segment whenever the transportation mode
changes or the time elapsed between two consecutive points
within a trip exceeds 20 minutes. This particular time thresh-
old was first proposed in the seminal paper of [4], and has
since been used by numerous subsequent works; see [5], [12]
for some examples.

Following trip segmentation, we extract motion features
using the raw GPS data at hand. We first compute the
geodesic distance and elapsed time between each pair of GPS
points. These two features enable the computation of higher-
order distance derivatives, such as velocity, acceleration, and
jerk. Given a GPS point pi and its successor pi+1, we
estimate the former’s relative distance ∆xpi

, elapsed time
∆tpi , velocity Vpi , acceleration Api , and jerk Jpi as follows:

∆xpi
= Geodesic(pi[lat, lon], pi+1[lat, lon]), (1)

∆tpi = pi+1[t]− pi[t], (2)

Vpi =
∆xpi

∆tpi

, (3)

Api
=
Vpi+1 − Vpi

∆tpi

, (4)

Jpi
=
Api+1 −Api

∆tpi

. (5)

In this study, we empirically select velocity, acceleration,
and jerk as the time series features to train our clustering
model, following previous transportation mode identification
literature [12], [13].

Next, we discard unrealistic GPS points according to
certain criteria, some of which were inspired by [12]. Specif-
ically, we remove a GPS point if any of the following are
true:

• Its latitude or longitude does not fall within valid ranges,
i.e., [-90, 90] and [-180, 180] degrees, respectively;

• Its timestamp is greater than that of the next point;
• Its velocity or acceleration exceeds reasonable thresh-

olds [12] given its corresponding transportation mode.
We then remove any points whose velocity exceeds the

99th percentile, or whose acceleration or jerk do not fall
between the 1st and 99th percentiles. Since the distribution of
velocities is highly skewed, we transform it using the cubic
root. Next, we standardize all three features to zero mean
and unit variance.

At this point, the resulting trip segments vary significantly
in number of points and length, with many segments span-
ning several kilometers. However, our CAE requires fixed-
size inputs of shape (1, nP, nF), where nP is the number of
points per segment and nF is the number of features per
point. In this study, we have empirically selected nP to be

128. Therefore, we divide all segments into nonoverlapping
chunks of length 128, discarding any segment whose total
number of GPS points is less than that. As opposed to [12],
we make no further assumptions such as minimum total
duration or distance.

B. Global Features

In addition to the local features described in the previous
subsection, we also compute four velocity- and acceleration-
based features over the entirety of each segment. Intuitively,
these global features might provide our CAE with useful
hints during training.

For each segment si, we compute the average velocity
AVsi , expectation of velocity EVsi , and maximum velocity
MVsi . Inspired by [5], we also select the stop rate SRsi ,
which they define as the number of GPS points whose
velocity is less than a threshold divided by the total segment
distance. However, we instead compute it as:

SRsi = |Ps|/nP, (6)

where Ps = {pi|pi ∈ si, Vpi < 3m/s} and nP is the number
of GPS points per segment. Finally, to use these global
features with our time series features, we repeat the former
128 times and append them to the latter for a total of seven
features.

C. Convolutional Autoencoder

An autoencoder is a neural network that aims to recon-
struct its input under some constraint that promotes the
extraction of useful latent representations, or embeddings.
Without loss of generality, it consists of an encoder that maps
the input xi to its latent representation hi, and a decoder
that outputs x̂i by attempting to reconstruct xi from hi.
CAEs are a class of autoencoders that process the data using
convolution layers. If the embedding layer’s dimensionality
is lower than that of the input layer, the autoencoder is termed
“undercomplete”.

In this study, we first pretrain a fully convolutional, under-
complete autoencoder to learn an initial lower-dimensional
representation of the input data. The term “fully convolu-
tional” refers to not using a densely-connected embedding
layer, which has been adopted by other CAE-based works
[17], [19], [20]; instead, we make appropriate use of 1 × 1
convolutions and reshape layers. The encoder and decoder
are symmetrical: the former consists of consecutive pairs of
convolution and max pooling layers, while the latter uses
deconvolution and upsampling layers, respectively. The only
exception is the encoder’s final convolution layer, i.e., the
embedding layer, which is not followed by a max pooling
layer. We use convolutions and deconvolutions configured
such that their outputs have the same length as their inputs.
Except for the final layer, each convolution and deconvo-
lution layer is followed by a batch normalization layer to
facilitate model training.

During pretraining, we attempt to minimize the CAE’s
reconstruction loss Lr, quantified as the mean squared error
between the original input si and the reconstructed input ŝi:

ReLU
Embedding

si
~
si

Clustering layer

ReLU ReLU ReLU ReLU ReLU

qi

input

conv + maxpool

(1 x 32 x 64)

(1 x 16 x 128)

(1 x 5 x 256)
5 features

(1 x 5 x 256)

(1 x 16 x 128)

(1 x 32 x 64)

(1 x 64 x 32)

(1 x 128 x nF)

(1 x 64 x 32)

conv + maxpool

conv + maxpool

conv + maxpool reshape + conv

upsample + deconv

upsample + deconv

upsample + deconv

conv + reshape upsample + deconv
(1 x 128 x nF)

Fig. 1. The composite clustering model.

Lr =
1

n

n∑
1

(si − ŝi)2. (7)

D. Clustering Layer

After pretraining the CAE, we attach a clustering layer to
its embedding layer as in [20]. The clustering layer contains
trainable weights {µj}K1 , where K is equal to the number
of desired clusters and µj corresponds to the coordinates of
the j-th centroid. In this study, K is set to 5.

On the forward pass, the clustering layer uses Student’s
t-distribution to assign cluster membership probabilities qij
to all embedded samples zi in the current batch as follows:

qij =
(1 + ‖zi − µj‖2)−1∑
j (1 + ‖zi − µj‖2)−1

. (8)

Having computed qij , we obtain soft labels qi as the indices
of the maximum probabilities, and estimate the normalized
target distribution P as:

pij =
q2ij/

∑
i qij∑

j (q2ij/
∑

i qij)
. (9)

On the backward pass, we cluster the embedded samples
zi by minimizing the Kullback-Leibler (KL) divergence
between P and Q:

Lc = KL(P ‖ Q) =
∑
i

∑
j

pij log
pij
qij
. (10)

E. Composite Clustering Model

We initialize the composite clustering model, illustrated
in Fig. 1, with a pretrained CAE whose embedding layer is
connected to a clustering layer, as described in Sections III-
C and III-D. We then train the composite clustering model
by minimizing the following objective function:

L = Lr + γLc, (11)

where hyperparameter γ controls the influence of the cluster-
ing loss on the total loss. Setting Lr = 0, γ = 1 reduces the
objective function to the one used in [19]. This effectively
discards the CAE’s decoder, potentially causing the clus-
tering process to adversely perturb the learned embedding.
Instead, [20] used γ = 0.1 to limit the strength of the
clustering process, producing better clusters on the same
datasets.

Another issue is how often to update the target distribution
P ; updating it too often could cause instability of the
clustering process, while the opposite might entrap it in
bad local minima. We use hyperparameter F , defined as a

fraction of a single training epoch, to control the frequency
of target distribution updates. For instance, F = 0.5 means
that the target distribution is updated twice on every epoch,
while F = 2 calls for an update once every two epochs.

IV. PERFORMANCE EVALUATION

This section first describes our simulation setup, including
the configuration of model parameters and clustering hyper-
parameters, our choice of evaluation metrics, as well as the
hardware on which the simulations were conducted. It then
presents the results from two case studies; the first compares
our clustering performance against established baselines,
while the second tests the sensitivity of our proposed method-
ology to hyperparameter variations.

A. Simulation Setup
The CAE’s encoder consists of five convolution layers

with 32, 64, 128, 256, and 1 filter. The first three layers
use a kernel size of 1 × 3 with “same” padding, while
the fourth and fifth ones use a stride of 1 × 7 and 1 × 1
respectively, both with “valid” padding. All convolution and
deconvolution layers are activated using the Rectified Linear
Unit (ReLU) function, except for the last layers of the
encoder and decoder which are linearly activated. The CAE
is pretrained for 600 epochs using the Adam optimizer with
an initial learning rate of 10−3 and default hyperparameters
β1 = 0.9, β2 = 0.999. After attaching the clustering layer,
we retrain the composite model using a learning rate of 10−4,
instead. Unless otherwise stated, we use γ = 20, F = 2
when clustering on local, global, or all features. Training
stops when fewer than 0.1% of samples are reassigned to a
different cluster during an iteration.

Given the predicted labels Ŷ and the ground-truth labels
Y , we use the following metrics to evaluate clustering
performance:

1) Accuracy (ACC). Following the definition in [16],
clustering accuracy is defined as:

ACC(Y, Ŷ) =
1

m

m∑
1

δ(yi,Map(ŷi)), (12)

where m equals the number of samples in the dataset
and δ(y, ŷ) equals one if y = ŷ or zero otherwise.
Map(ŷi) is a function that maps a predicted label
ŷi to the equivalent label in the dataset. Using a
linear assignment problem formulation, Map(ŷi) is
then computed using the Hungarian algorithm [22].

TABLE I
CLUSTERING EVALUATION RESULTS

Local features Global features All features
ACC NMI ACC NMI ACC NMI

KM 54.4% 38.7% 73.1% 58.9% 61.8% 50.7%
SC 40.5% 30.4% 69.9% 58.5% 59.1% 51.2%

HAC 52.1% 36.1% 66.2% 57.3% 59.5% 50.5%
CAE + KM 64.2% 41.9% 65.9% 54.4% 77.4% 61.0%
CAE + SC 47.9% 36.8% 65.7% 54.0% 75.2% 60.3%

CAE + HAC 64.9% 42.5% 61.8% 53.4% 75.7% 59.3%
SECA [12] 62.9% - - - - -
Proposed 70.1% 47.9% 73.8% 58.6% 80.5% 64.4%

2) Normalized Mutual Information (NMI). NMI is
defined as:

NMI(Y, Ŷ) =
MI(Y, Ŷ)

max(H(Y), H(Ŷ))
, (13)

where MI(Y, Ŷ) is the mutual information of Y and
Ŷ , and H(Y), H(Ŷ) correspond to the entropies of Y
and Ŷ , respectively.

All experiments were conducted on a server with an
NVIDIA GeForce RTX 2080Ti GPU and an Intel Xeon
Silver 4210 CPU clocked at 2.20GHz. The reported values
for ACC or NMI refer to the averaged results obtained over
five executions.

B. Clustering Evaluation
To demonstrate the effectiveness of integrating local and

global features, we evaluate clustering performance in three
scenarios, i.e., using (i) local features, (ii) global features,
and (iii) the combination thereof. We compare our results
with those of seven baselines, which are categorized as
follows:

• Traditional clustering on original features. We select
the widely used (1) K-Means (KM), (2) Spectral Clus-
tering (SC), and (3) Hierarchical Agglomerative Clus-
tering (HAC) algorithms, as implemented in Python’s
“scikit-learn” machine learning library. Since these im-
plementations are not designed for data of more than
two dimensions, we take the mean feature values per
data sample when using either the local features or their
combination with the global ones.

• Traditional clustering on embedded features. While
the algorithms in the previous category cluster the
original samples si, here we instead use the CAE-
embedded samples zi for K-means, spectral, and hier-
archical agglomerative clustering. For clarity, we refer
to these cases as (4) “CAE + KM”, (5) “CAE + SC”,
and (6) “CAE + HAC”.

• Semi-supervised classification. Since no other work in
the literature has performed unsupervised transportation
mode identification, we evaluate our proposed frame-
work against the (7) SEmi-supervised Convolutional
Autoencoder (SECA) [12], which used as little as 10%
of the ground-truth labels for semi-supervised classifi-
cation instead.

We report our experimental results in Table I. The pro-
posed framework achieved significantly better results than
the traditional clustering algorithms when applied to local or

Fig. 2. The five clusters produced by the proposed framework for local,
global, and all features, respectively. We use red, green, blue, orange, and
magenta to denote “walk”, “bike”, “bus”, “driving”, and “train” classes.

all features. In addition, it considerably outperformed SECA,
which has an accuracy of 62.9% using not only 10% of the
available ground-truth labels but also trajectory segments of
nearly twice the size (248) as ours (128). It is evident that
combining local, point-level features with global, segment-
level features resulted in substantial improvements for all
evaluated methods.

Fig. 2 plots a two-dimensional visualization of the clusters
generated by the proposed framework. We note that with
local features, all clusters except for the one corresponding to
“driving” were generally well separated. Crucially, although
using only global features resulted in better accuracy than
using only local ones, the clusters in the former case were
highly irregular. This highlights the proposed benefit of
combining local and global features, which produced both
the highest accuracy and the best defined clusters as shown
in the third subplot of Fig. 2.

Unsurprisingly, the traditional clustering algorithms per-
formed worst when applied to the original data with local
or all features. This can be attributed in part to the features
being averaged over all 128 timesteps for each sample in
order to have the required dimensionality. On the other hand,
the same algorithms achieved better results when applied
to the CAE-learned embeddings of local or all features.
They also did much better on the original data when using
global features, with KM nearly matching the accuracy of
our framework; intuitively, the global features’ low dimen-
sionality should be a better fit for the traditional clustering
algorithms.

C. Hyperparameter Sensitivity

As mentioned in Section III, the lack of ground-truth
labels in unsupervised learning makes it difficult to tune
the hyperparameters of any clustering model. Hence, such
a model should ideally be robust to a reasonable range of
hyperparameter variations.

To assess the proposed model’s sensitivity to hyperparam-
eters γ and F , we first empirically select a value that works
well enough for F , i.e., F = 2, then test values for γ ranging
from 0.1 to 100. Table II shows the corresponding clustering
accuracy results. We note that the proposed clustering frame-
work appears to be somewhat sensitive to values of γ < 1
when trained on local features and γ > 20 on global ones.
In contrast, it appears to be more robust to variations of γ
when trained on all features.

Next, we set γ = 20 and evaluate the clustering model as
F iterates through the previous range of values. According to

TABLE II
SENSITIVITY OF ACCURACY TO STRENGTH OF CLUSTERING LOSS

Features γ
0.1 0.2 0.5 1 2 5 10 20 50 100

Local 65.7% 66.8% 67.6% 68.1% 68.4% 69.0% 68.9% 70.1% 69.8% 69.9%
Global 70.8% 71.4% 69.3% 71.8% 69.2% 70.0% 72.1% 73.8% 69.6% 68.0%

All 79.6% 79.4% 78.6% 78.6% 79.2% 78.5% 79.1% 80.5% 79.0% 78.3%

TABLE III
SENSITIVITY OF ACCURACY TO FREQUENCY OF TARGET DISTRIBUTION UPDATES

Features F
0.1 0.2 0.5 1 2 5 10 20 50 100

Local 51.5% 53.5% 62.6% 69.3% 70.1% 69.4% 69.9% 70.0% 70.0% 69.9%
Global 64.8% 65.0% 66.5% 68.5% 73.8% 71.9% 70.6% 72.1% 72.6% 72.3%

All 76.9% 75.6% 79.9% 78.8% 80.5% 78.3% 80.2% 80.5% 80.4% 80.3%

the results shown in Table III, it seems that values of F < 1
and F < 2 result in significant instability when training on
local or global features, respectively. Albeit on a smaller
scale, F < 0.5 also impacts performance when using all
features. Nonetheless, we note that our clustering model is
most robust to variations of F when trained on all features.

V. CONCLUSION

In this paper, we proposed an unsupervised deep learning
approach to clustering GPS trajectories by transportation
mode. Using fixed-size trajectory segments, we first pre-
trained a deep CAE, and then attached a clustering layer
to its embedding layer, the former having cluster centroid
coordinates as trainable weights. We finally retrained the
composite model by jointly optimizing the reconstruction and
clustering losses. The proposed framework achieved a clus-
tering accuracy of 70.1% on Geolife using only local, time
series features, significantly outperforming both traditional
clustering algorithms and the semi-supervised state-of-the-
art in transportation mode identification. When combining
the local features with global features averaged over each
trajectory segment, the proposed framework achieved an even
higher accuracy of 80.5%. Our hyperparameter sensitivity
tests also showed that the proposed framework is not overly
sensitive to the strength of the clustering loss over the
reconstruction loss or the frequency of target distribution
updates. In future work, we will investigate methods for
unsupervised trip segmentation and real-time, progressive
transportation mode identification.

REFERENCES

[1] A. C. Prelipcean, G. Gidofalvi, and Y. O. Susilo, “Transportation
mode detection – an in-depth review of applicability and reliability,”
Transport Reviews, vol. 37, no. 4, pp. 442–464, 2017.

[2] Y. Wang, D. Zhang, Y. Liu, B. Dai, and L. H. Lee, “Enhancing
transportation systems via deep learning: A survey,” Transportation
Research Part C: Emerging Technologies, vol. 99, pp. 144–163, 2019.

[3] G. Xiao, Z. Juan, and C. Zhang, “Travel mode detection based on
GPS track data and Bayesian networks,” Computers, Environment and
Urban Systems, vol. 54, pp. 14–22, 2015.

[4] Y. Zheng, L. Liu, L. Wang, and X. Xie, “Learning transportation
mode from raw GPS data for geographic applications on the web,”
in Proceedings of the 17th International Conference on World Wide
Web, Beijing, China, 2008, pp. 247–256.

[5] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding
mobility based on GPS data,” in Proceedings of the 10th International
Conference on Ubiquitous Computing, Seoul, Korea, 2008, pp. 312–
321.

[6] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu, “Transportation mode
detection using mobile phones and GIS information,” in Proceedings
of the 19th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, Chicago, IL, 2011, pp. 54–63.

[7] Z. Sun and X. J. Ban, “Vehicle classification using GPS data,”
Transportation Research Part C: Emerging Technologies, vol. 37, pp.
102–117, 2013.

[8] Q. Xie, E. Hovy, M.-T. Luong, and Q. V. Le, “Self-training
with noisy student improves imagenet classification,” arXiv preprint
arXiv:1911.04252, 2019.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[10] H. Wang, G. Liu, J. Duan, and L. Zhang, “Detecting transportation
modes using deep neural network,” IEICE Transactions on Information
and Systems, vol. 100, no. 5, pp. 1132–1135, 2017.

[11] M. Simoncini, L. Taccari, F. Sambo, L. Bravi, S. Salti, and A. Lori,
“Vehicle classification from low-frequency GPS data with recurrent
neural networks,” Transportation Research Part C: Emerging Tech-
nologies, vol. 91, pp. 176–191, 2018.

[12] S. Dabiri, C.-T. Lu, K. Heaslip, and C. K. Reddy, “Semi-supervised
deep learning approach for transportation mode identification using
GPS trajectory data,” IEEE Transactions on Knowledge and Data
Engineering, in press.

[13] R. Zhang, P. Xie, C. Wang, G. Liu, and S. Wan, “Classifying
transportation mode and speed from trajectory data via deep multi-
scale learning,” Computer Networks, vol. 162, p. 106861, 2019.

[14] F. Li, H. Qiao, and B. Zhang, “Discriminatively boosted image clus-
tering with fully convolutional auto-encoders,” Pattern Recognition,
vol. 83, pp. 161–173, 2018.

[15] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–
507, 2006.

[16] C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder based
data clustering,” in Iberoamerican Congress on Pattern Recognition,
Havana, Cuba, 2013, pp. 117–124.

[17] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-
means-friendly spaces: Simultaneous deep learning and clustering,”
in Proceedings of the 34th International Conference on Machine
Learning, Sydney, Australia, 2017, pp. 3861–3870.

[18] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of
deep representations and image clusters,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, 2016, pp. 5147–5156.

[19] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding
for clustering analysis,” in Proceedings of the 33rd International
Conference on Machine Learning, New York, NY, 2016, pp. 478–487.

[20] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with convolu-
tional autoencoders,” in International Conference on Neural Informa-
tion Processing, Guangzhou, China, 2017, pp. 373–382.

[21] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering
for unsupervised learning of visual features,” in Proceedings of the
European Conference on Computer Vision, Munich, Germany, 2018,
pp. 132–149.

[22] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

