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ABSTRACT

Recent years have witnessed the prevalence of memory-based methods for Semi-supervised Video Object
Segmentation (SVOS) which utilise past frames efficiently for label propagation. When conducting feature
matching, fine-grained multi-scale feature matching has typically been performed using all query points,
which inevitably results in redundant computations and thus makes the fusion of multi-scale results in-
effective. In this paper, we develop a new Point-based Memory Network, termed as PMNet, to perform
fine-grained feature matching on hard samples only, assuming that easy samples can already obtain sat-
isfactory matching results without the need for complicated multi-scale feature matching. Our approach
first generates an uncertainty map from the initial decoding outputs. Next, the fine-grained features at
uncertain locations are sampled to match the memory features on the same scale. Finally, the matching
results are further decoded to provide a refined output. The point-based scheme works with the coars-
est feature matching in a complementary and efficient manner. Furthermore, we propose an approach
to adaptively perform global or regional matching based on the motion history of memory points, mak-
ing our method more robust against ambiguous backgrounds. Experimental results on several benchmark

datasets demonstrate the superiority of our proposed method over state-of-the-art methods.

© 2022 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Video Object Segmentation (VOS) is one of the fundamental
problems in video understanding. As the main branch of VOS,
semi-supervised video object segmentation (SVOS) aims to infer
the object masks in every frame using only masks annotated in the
first frame. SVOS focuses on target objects (the annotated objects)
segmentation, which has significant value in several real-world
applications, such as video editing, summarisation, and surveil-
lance [1,2].

Recently, matching-based methods have dominated the SVOS
field due to their robust and efficient implementations. The basic
idea of these methods advocates the propagation of dense labels
from the reference frames (past frames) to the query frame (the
frame to be segmented). Such a propagation is implicitly guided by
the similarity of their features. The earlier matching-based meth-
ods consider the first and previous frames as the reference to gen-
erate the results with spatiotemporal consistency [3,4]. Under the
umbrella of memory-based methods, new variants also utilise the
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intermediate frames between the first and previous frames, enrich-
ing the object changes and further improving the state-of-the-art
performance at the cost of more memory consumptions [5-13].

For both methods, feature matching plays a vital role in fine-
grained label prediction, which has been one of the major goals
in general segmentation tasks, but has not been fully explored in
SVOS. Fig. 1(a) summarises the primary matching-based methods.
It is observed that the feature matching at the coarsest scale (with
a stride of 16) builds a single connection between frames, which
guides the coarse label propagation. However, when refining the
propagation, these methods only rely on high-resolution query fea-
tures but ignore the reference frame labels on the same scales.
Therefore, the final results may not be consistent with the target
objects in the reference frames.

To improve the fine-grained label propagation, recent works
advocated the use of multi-scale matching [12,14]. As shown in
Fig. 1(b), the matching results on the finer scales (with strides of 4,
8) are measured and fused with the coarsest results. Therefore, the
label propagation is simultaneously constrained by high-level se-
mantic features and low-level detailed features. Although achieving
high-quality results, these methods share a common limitation, i.e.,
all query feature points on all scales are considered during match-
ing, resulting in a high degree of redundant computation. In re-
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Fig. 1. Comparison of different matching-based SVOS methods, mainly in what scales of features, and what point sampling approaches are involved during inference. (a)
Most existing methods utilise the coarsest reference features and multi-scale query features (highlighted with the light green rectangle). Matching is done on the coarsest
scale only, where query features are densely sampled (yellow points). (b) Multi-scale matching-based methods perform reference/query feature matching on multiple scales.
For each scale, query features are densely sampled. (c) Our method still performs matching on the coarsest scale, where all query features are involved. However, on the
finest scale, we only sample the uncertain points (highlighted red circles, where segmentation results are error-prone) and consider them for fine-grained matching. The
segmentation results are predicted by STM [5] (a), HMMN [12] (b), and ours (c). The ROIs highlighted by yellow boxes are zoomed in for better comparison in fine-grained
prediction. Best viewed in colour. . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ality, only the points with high-frequency signals require different
processes on a finer scale, whereas the others can achieve satisfac-
tory results even if the matching is conducted at the coarsest scale.
Moreover, considering all feature points distracts the learning from
an effective fusion strategy between different scales of matching
results since most video frame points are “easy samples” and do
not require refinement.

Inspired by the above observations, we propose a point-based
refinement module to reduce redundant computations and focus
on “hard samples” only, i.e., the spatial regions or points with
ambiguous features, which confuse most existing SVOS methods
to make correct and confident predictions. As shown in Fig. 1(c),
we first infer the initial masks from the coarsest matching results.
Then, a set of uncertain points with potentially non-ideal results
are derivated from the intermediate decoding outputs. During re-
finement, our approach only considers these uncertain points for
fine-grained feature matching. In this way, these points can serve
as hard samples to encourage segmentation modules to be more
effective against ambiguous features. To improve the confidence of
the uncertain points, we implement an uncertainty detection mod-
ule with a lightweight CNN architecture, which generates uncer-
tainty maps from the intermediate decoding outputs (with differ-
ent scales).

To the best of our knowledge, the proposed SVOS algorithm is
the first approach to implement the point-based refinement, which
utilises detailed low-level features more efficiently than multi-scale
matching [12,14]. Although AFB-URR [8] also computes the uncer-
tain regions to refine the initial results, all query points are still
involved. In addition, AFB-URR [8] only relies on the confident
results to refine their neighbouring uncertain regions. Therefore,
the effect of its refinement module is limited. Compared with the
point-based refinement for other tasks, our proposed method re-
mains competitive. Kirillov et al. [15] measures a set of uncertain
regions from the ambiguous probabilities and refines them with
fine-grained features. Zhang et al. [16] first predicts initial masks
from the coarsest features and then improves the boundary re-
gions with fine-grained features. Although these methods also re-
sort fine-grained features for refinement, they mainly focus on the
ambiguous boundaries, which come from the final predictions. In
contrast, our method implements a learnable module to predict
potential errors from different scales of intermediate decoding out-
puts. As a result, more hard samples can be mined to enhance the
refinement module.

Besides the fine-grained feature matching, temporal consistency
is also essential for high-quality segmentation results. However,
most memory-based methods [5,6,8,9,13] ignore temporal informa-
tion and only perform global matching between frames. Although
achieving good robustness against occlusions and fast motion, the
methods are sensitive to the regions similar to target objects. In
more recent developments [10-12], this problem has been miti-
gated by incorporating local matching, which replies on a sensi-
ble assumption that objects move smoothly throughout video se-
quences. During local matching, recent frames could provide rea-
sonable spatial-temporal constraints to filter out ambiguous re-
gions. Given the complementary nature of global and local match-
ing, it is evident that a fusion strategy would benefit to segmen-
tation performance. However, this has been underexplored in ex-
isting methods. LCM [10] and HMMN [12] perform local match-
ing on recent reference frames and global matching on distant ref-
erence frames. Although such a strategy can handle most cases,
some challenges remain (e.g., the ambiguity when matching with
distant reference frames). Alternatively, RMNet [11] performs local
matching on all reference frames. However, since only short-term
spatial-temporal constraints are applied (from optical flow), match-
ing with distant reference frames would lose some informative
correlations, thus requiring an additional mechanism for comple-
ments. Therefore, to handle more challenging videos efficiently, an
adaptive and compact approach is required to fuse different kinds
of matching schemes.

Unlike existing methods [10-12], which apply the same match-
ing scheme to all the feature points from the same reference frame,
we propose to deal with them differently using appropriate match-
ing schemes. To this end, we build point trajectories from refer-
ence frames to the query frame, based on the intermediate results
during segmentation. For each reference feature point, its match-
ing scheme depends on the changes it has experienced along the
corresponding path. For example, if one point has undergone only
slight changes between frames, it should be locally matched with
query points, even if it comes from a distant reference frame. On
the contrary, the global matching should be performed on the
points experiencing drastic changes, even they come from recent
reference frames. In this way, the proposed adaptive matching
module can break the limitations of temporal distance and adapt
feature matching to video contexts.

Our contribution can be summarised as follows:



M. Gao, J. Han, F. Zheng et al.

(1) We propose a point-based refinement module, which resorts
to multi-scale feature matching to improve segmentation re-
sults. But unlike the existing methods, the proposed module
only considers the uncertain points rather than all the points
when performing matching on the finer scales. Therefore, sim-
ilar or even better results can be achieved with less computa-
tion.

(2) We propose an adaptive matching module, which flexibly as-
signs each memory feature point (spatially basic component in
memory feature maps) with an appropriate matching scheme,
according to its dynamic information throughout the video.
Compared with the existing matching-based methods, which
solely rely on either global or temporal distance-based match-
ing schemes, the proposed module can better adapt to video
contexts and achieve better complementary between different
matching schemes.

(3) The proposed method (Point-based Matching Network, termed
as PMNet) achieves the state-of-the-art performance on several
benchmark datasets while retaining competitive efficiency.

2. Related work

Earlier methods perform SVOS mainly based on discriminative
feature descriptors and motion information [17,18]. More recently,
deep learning techniques have prompted SVOS performance con-
siderably due to their robust feature representations. This sec-
tion gives a brief overview of the deep learning-based SVOS meth-
ods by different strategies they utilise.

2.1. Online fine-tuning-based SVOS

This approach is firstly proposed in OSVOS [19], which fine-
tunes segmentation networks with the first frame annotations,
shifting the output domain from general objects to the annotated
ones. Extended from OSVOS, OnAVOS [20] further fine-tuned net-
works with confident segmentation results. OSVOS-S [21] com-
plements the segmentation results with the semantic information
of the annotated objects. Despite achieving good results, online
fine-tuning is rarely explored in recent works since it is time-
consuming and easy to overfit.

2.2. Propagation-based SVOS

This approach is firstly proposed in MaskTrack [22], which as-
sumes objects move smoothly throughout the sequence. There-
fore, the objects predicted from the previous frame can well es-
timate the current segmentation. Due to its efficient implementa-
tion, mask propagation has been widely used in subsequent SVOS
works. The representative improvement mainly lies in adapting the
propagated masks to the current frame [23]. To mitigate the er-
ror accumulation, ARG-VOS [24] implemented two reinforcement
learning-based models to adapt the previous results to the current
frame context. Despite being efficient, these methods are vulnera-
ble to occlusions and fast motion.

Besides the short-term propagation, the approaches dedicated
to long-term spatiotemporal information propagation are also
utilised for SVOS. For instance, ConvLSTM-based methods [25] and
ConvGRU-based methods [6]. Theoretically, this approach can
learn long-term dependency. However, limited by computation re-
sources, their models can only be optimised with short video clips,
which degrades the expected SVOS performance.

2.3. Matching-based SVOS

Unlike online fine-tuning, this approach segments the target
objects by measuring cross-frame feature correspondence rather
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than fine-tuning network parameters. Therefore, more efficiency
can be achieved during inference. Currently, there are mainly two
matching strategies for SVOS: ROI matching and dense matching.
The former tracks and segments the ROIs of either the whole ob-
ject [26] or object parts [27] throughout the sequences. However,
since the ROI-level matching is sensitive to partial loss, this ap-
proach cannot handle the sequences with heavy occlusions. In con-
trast, the latter utilises dense matching results to implicitly guide
the label propagation between frames. The conventional dense
matching-based SVOS methods initialise the reference with the
first frame annotation and enrich it with subsequent confident re-
sults [28]. To suppress ambiguous backgrounds and achieve the
results with temporal smoothness, other matching-based meth-
ods considered the previous frame during inference. For instance,
RGMP [3] integrates previous frame masks into the matching be-
tween the first and query frames. FEELVOS [4] explicitly performs
feature matching between the previous and query frames. The re-
sulting local correspondence complements the global matching be-
tween the first and query frames well. Instead of focusing on the
object regions only, CFBI [29] performs feature matching on both
object and background, encouraging the feature embedding to be
contrastive. As an extension of CFBI [29], CFBI+ [14] further im-
proves the SVOS performance by multi-scale feature matching.

2.4. Memory-based SVOS

This approach was firstly proposed in STM [5], which en-
ables the segmentation network to be more robust against object
changes (e.g., scale and appearance) by considering additional past
frames as the reference frames (memory frames). STM [5] outper-
formed state-of-the-art methods on all benchmark datasets at the
time of publication and therefore attracted much attention in the
community. Several recently proposed methods have attempted to
improve specific aspects of STM:

(1) Temporal correspondence between memory frames, imple-
mented in EGMN [6]. This approach proposes a graph-based
scheme to highlight the background and frequently appearing
objects in memory frames.

(2) Memory management, implemented in AFB-URR [8] and Swift-
Net [9]. Instead of considering the whole past frames, these ap-
proaches only store useful and discriminative points in memory
to avoid redundant computation and improve memory usage.

(3) Local feature matching, implemented in KMN [7], LCM [10], and
RMNet [11]. These approaches perform feature matching within
a local area of the memory and/or query frames based on tem-
poral smoothness [10,11] or mutual matching [7].

(4) Multi-scale feature matching, implemented in HMMN [12]. This
approach improves the quality of segmentation results by per-
forming matching on feature maps at different resolutions.

(5) Efficient similarity metrics, implemented in STCN [13]. This ap-
proach reveals that the dot product in memory-based meth-
ods degraded feature utilisation and replaced it with a com-
putationally efficient L2 distance. In addition, the architecture
of feature encoders are simplified. These contributions intro-
duced a considerable improvement in both accuracy and effi-
ciency and set a new benchmark for memory-based SVOS.

Due to the good balance between SVOS accuracy and efficiency,
we build our method upon a memory-based approach. From the
above descriptions, it is observed that multi-scale feature match-
ing has not been fully explored. Therefore, our method can achieve
further improvement and inspire future research. In addition, the
existing memory-based SVOS methods cannot well balance local
and global matching between frames. Our adaptive matching strat-
egy shrinks the gap by linking the memory feature points across
frames.
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Fig. 2. An overview of our PMNet. The point-based refinement module improves decoding results with high-resolution query keys, memory keys (both from the key encoder)
and memory values (from the memory value encoder). The adaptive matching module utilises the motion histories of memory points to suppress ambiguous backgrounds.
Both contributions are highlighted in red bold fonts. Yellow boxes show the main difference between the initial and refined results. Please refer to Section 4.1 for more
implementation details. Best viewed in colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3. Method

We propose Point-based Memoty Network (PMNet) for fine-
grained SVOS. Section 3.1 overviews the proposed architecture. In
Section 3.2, we introduce the point-based refinement module. The
adaptive matching module is presented in Section 3.3.

3.1. Overview

Fig. 2 illustrates the overall architecture of PMNet. Analogously
to other memory-based methods, PMNet encodes video frames
into keys and values, where keys are light-weight embeddings
for similarity measurement; values are formed with more chan-
nels of information and used for feature aggregation and decoding.
Specifically, our backbone network is designed based on STCN [13],
which utilises the shared encoder for query/memory keys and
query values, a lightweight encoder for memory values. Although
the decoder considers high-resolution query features (with strides
of 4 and 8) to generate fine-grained outputs, the memory labels on
the same scales are ignored. In other words, STCN [13] and most
existing memory-based SVOS methods [5-11,13] refine their results
with coarse labels only. Therefore, the predicted objects might dif-
fer from the target in some details.

We address this issue with a refinement scheme, where high-
resolution memory labels are taken into account in order to im-
prove the initial results. To maintain competitive efficiency, we im-
plement the scheme with point-based refinement module, where
only uncertain results are involved. The module is presented in
Section 3.2. In addition, we propose an adaptive matching module
to suppress ambiguous backgrounds. During inference, the tracking
confidence of the memory points determine whether the global
matching or local matching is performed. More details can be
found in Section 3.3.

Before proceeding, we provide the necessary definitions about
PMNet here. As shown in Fig. 2, PMNet mainly consists of
three parts: backbone (fyickpone With learnable parameters 6, in-
cluding encoders, value head, fuse module, and decoder), point-
based refinement module (including uncertainty detection module
funcertain @nd point processing module fpqin;, with learnable pa-
rameters ¢ and y, respectively), and adaptive matching module
(non-learnable). Given a query frame I ¢ RE*W>3 and T memory

frames IM e RT*HxWx3 where H and W indicate the height and
width dimensions, PMNet performs SVOS mainly in three steps:

(1) Prepare multi-scale features with , including query
backbone
features (X%eRH/“XW/“XZ%, XgeRH/SXW/SXm, and X%e

RH/16><W/16><1024) and memory features (X%ERTXH/‘lXW/‘IXZSG
and Xllvé c RTXH/]GXW/16X1024)_

(2) Encode the coarsest query/memory keys (XEey 16 €
RH/16xW/16x64 X{gley 1 € RTXH/16xW/16x64) and values

Q H/16xW/16x512 M TxH/16xW/16x512 ;
(Xvalue,16 eR /10X W16 ’ Xvalue,ls eR™ /16X W/16x ) with

foackbone @nd perform the adaptive matching to get the initial
segmentation results.

(3) Employ fyncertain to detect uncertain points from the intermedi-
ate decoding outputs (generated when predicting the initial re-
sults). Then, utilise fjqin; to encode point-wise query/memory

keys and values from X2, X¥, and Xfll_4, and leverage point-

based matching to refine the initial results.

3.2. Point-based refinement module

The module aims to improve the fine-grained SVOS while keep-
ing competitive efficiency. As shown in Fig. 3, it performs refine-
ment in three steps: (1) uncertainty detection from decoding out-
puts (with fyncertain); (2) fine-grained feature matching and aggre-
gation on uncertain points (with fyinc); (3) point-based refinement
on uncertain points (with f,ic). More details are in order.

3.2.1. Uncertainty detection

The module detects uncertain points where the initial results
are error-prone. The existing SVOS method [8] achieves this only
from the predicted probabilities. Despite being efficient, the un-
certain regions mainly focus on object boundaries and have lit-
tle response inside the object or background regions. The uncer-
tain region here indicates a set of spatially connected uncertain
points. an uncertain region could be a spatially isolated uncertain
point or any number of the spatially connected uncertain points.
Instead of relying on the probabilities, we utilise more clues to de-
tect potentially erroneous results. As shown in Fig. 4, we propose
a lightweight CNN-based module to generate the uncertainty map:
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to further refine the initial predictions (Section 3.2.3, corresponding to the dark green data flow). All heads here are implemented with one FC layer. More details about the
uncertainty detection module are shown in Fig. 4. Best viewed in colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 4. (a) Diagram of our uncertainty detection module, which generates an uncertainty map U € R/4*W/4 from the intermediate decoding outputs: (D;g € RH/16xW/16x256
Dg € RF/8xW/8x256  and D, e RM/4xW/4x256) H and W denote the height and width of video frames. The numbers around data flows (arrows) indicate the corresponding data
dimensions and strides. We apply the stop gradient (sg) between decoder blocks and the module to focus our backbone network on the segmentation task only. (b) Top: The
input video frame with the initial results (green mask). Yellow boxes are the ROIs for detailed analysis. Bottom: The generated uncertainty map U € RH/4xW/4 Middle: ROIs
zoomed from initial results and the corresponding uncertainty map. (c) Top: The input video frame with the refined results (green mask), Bottom: Uncertain points sampled
from the uncertainty map. The sampling is constrained by the red box, which contains the initial segmentation results (with 120% of the original height and width to avoid
under-sampling), Middle: ROIs zoomed from the refined results and corresponding uncertainty points. Best viewed in colour. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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U = funcertain(D. @)) € RH/AW/4 \where D = {Dqg, Dg, D,} are inter-
mediate decoding outputs (with strides of 16, 8, and 4). The pa-
rameters @ in fypcertain are optimised by minimising a weighted
smooth L1 loss:

1 ) .
ﬁuncertain = Z - Wi['smoothLl (Ui? Ui ), (1)
! ieQ

ca Wi

where U; is the uncertainty at the location i, U*=

| foackbone I¢. IM.8) — M| is the difference between the predicted

propabilities (e [0, 1]#/4<W/4) and the down-sampled ground truth

mask M e {0, 1}//4W/4 w, =1 if U; belongs to the top ratio%
uncertainty points and w; = 0 otherwise.

From U, we sample uncertain points with top K uncertainty val-
ues. K depends on the size of the corresponding object. As shown
in Fig. 4, we first generate a box containing the initial object mask,
with 120% of original height and width to avoid under-sampling.
Then, we select the points with top 20% uncertainty from U, i.e., K
is 20% of the box’s area.

3.2.2. Point-based feature matching and aggregation
Based on the uncertain points, we select K query feature vectors
from Xf and feed them into Q-Key/Value heads to encode query

keys (Xl‘(ley. 4 € R*6%) and values (X\%lue’ 4 € R512). To achieve a
better balance between the SVOS accuracy and efficiency, we only
sample M memory feature points from the first and previous
frames for point-based matching and refinement. Specifically, we
sample H x W/4sélobal points from the first frame, where Sgjop is
the interval for stridden sampling. For the previous frame, we only
consider a local window (Wjyca X Wiocq) around each query fea-
ture point. Therefore, M = H x W/ (4Sglobal)2 + W120cal for each query
feature point. We utilise M-Key/Fusion heads to generate XM

€

key.4
Mx64 M Mx512 M M fon i
RM>5% and Xialue 4 € RMX from X," and X4 For each location i
in Xl?ey 4 its L2 similarity with M corresponding fine-grained mem-

ory features Xl’(‘gy 4

M 2
Si.j = ||X§ey,4‘,- _xkey,4,i,j|| . (2)

is measured by:

S e RK*M can be efficiently estimated via the simplified ap-
proach in Cheng et al. [13], which formulates L2 distance as the
tensor multiplication. Next, the affinity is processed by softmax
and used as weights to sum the memory values:

X4 = SOftmax(S) gim=1 x Xyayes- 3)

M Kx512 j i Q Kx512
Then, Xgm4 € R is concatenated with X7, € R to

aggregate the fine-grained query and memory features: X,44 €
RKx1024

3.2.3. Point-based refinement

As shown in Fig. 3, X,ge4 € R¥¥1024 js processed by three FC
layers to further enhance the aggregation and reduce the feature
dimensions from 1024 to 256. Then, it is added to the uncertain
decoding outputs Uncertain(D,4) € RX*236_ Finally, the refinement is
achieved by feeding the added features into another module with
three FC layers.

3.2.4. Optimisation

As mentioned above, we define all heads and FC layers as a uni-
fied point processing module fji;, Whose parameters y are opti-
mised together with backbone parameters & by minimising a com-
bined loss:

L = ﬁ Yice Wiﬁcoarse(fbackbone(IQvIM’G)i»Mi)

(4)
+)\,l( Zketopl((u) ﬁﬁne (fpoint (D4? X, V)ky Mk),
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where X = {X2, X% XM,} are the fine-grained features, topK(U)
is a set with K uncertain points. Lcoarse and Lgne are both cross-
entropy loss. w; = 1 if the loss on the location i belongs to the top
ratio% losses and w; = 0 otherwise.

3.3. Adaptive matching module

The module aims to mitigate the ambiguity issue when match-
ing between memory and query features. In most memory-based
SVOS methods, all memory feature points are considered equally,
making these methods vulnerable to ambiguous backgrounds. By
contrast, our method builds trajectories from memory to query
points. With the trajectories and corresponding confidences, each
query feature point will be matched with the relevant memory
feature points only, potentially suppressing the ambiguity within
memory features.

Given the embedded key features of memory and query frames:
X{(V'ey € RTxHxWx64 3nd Xgey € RAXWx64 " existing memory-based

methods firstly compute the point-wise similarities between them:

Sp.a = SXiey.p> Xy g)» (5)

where H, W, 64, and T represent the height, width, channel, and
temporal dimensions. p and g are memory and query feature
points. s(-) usually measures cosine similairty or L2 distance. Upon
the similarities, the methods propagate the information implying
labels from memory frames to the query frame. For each query
point g, the propagation is implemented by aggregating the value
features of all points. This procedure can be formulated as:

Wp.q - exp(Spq)
XM S p.q P.q
ageg.q Xp: > pWhpq-exp(Spq)

value,p

where Wp 4 is the parameter to weigh point-wise similarities, used
to formulate different matching schemes in a uniform way. The
global matching-based methods [5,6,8,9,13] usually fix W4 as a
constant, which indicates all similarities are considered equally
during inference. As mentioned in Section 1, these methods can-
not well handle ambiguous regions. To mitigate this problem, some
recent methods [10,12] consider the spatial-temporal distance be-
tween points to define W) 4, which increases when p and q are
approaching. However, such constraint gradually fades for distant
memory frames during inference since the increase of temporal
distance makes W) 4 related to these frames closer together. This
makes sense because the foreground objects from remote frames
probably experience heavy changes in location. However, the am-
biguity problem remains when matching with remote frames.

We propose an adaptive matching module to alleviate the am-
biguity problem while achieving robustness against occlusions and
fast motion. Instead of using the constant or time-conditioned
weights, our module generates weights for each memory point in-
dividually, based on its dynamic property from the original frame
to the query frame. Here, memory point indexes the spatially ba-
sic component in the memory feature map. Specifically, the weight
between a memory point p and query point q is obtained by:

Wyg = fueignt (d(p%, q), 8(p?)), (7)

where p? is the tracking location of point p in the query frame.
d(-,-) measures the spatial distance between points. W, 4 increases
when p? and q are approaching. For each memory point p, the re-
lated Wy 4 form a matrix: W, € RF*W, which corresponds to the
weights between p and all points in the query frame. Due to the
dynamic nature of videos, the tracking location pQ might not al-
ways be perfect. Therefore, we measure the tracking confidence
8(p?) to control the distribution of W,. Specifically, the distri-
bution becomes “sharp” when pQ is confident. As a result, the
weights corresponding to the query points close to p¢ are much
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Fig. 5. The main idea of our adaptive matching module and its difference from the existing methods. Top row: The red arrows form a point trajectory from a remote memory
frame to the query frame (point 1 — point 2 — point3 — point 4). Point 5 (highlighted in blue) looks similar to point 1 (belong to the target object). Therefore it is an
ambiguous point. (a): The global matching-based methods (whose W, 4 is constant) cannot handle this since they consider all similarities equally. Therefore, when matching
with the remote memory frame, the high similarity between points 1 and 5 leads to false label propagation. (b): The existing local matching-based methods (whose W) 4
is time-conditioned) cannot handle this since they only apply the distance-based constraint to the recent memory frames. With temporal distance increasing, the weight
matrices of remote memory points gradually tend to consider all similarities equally. Therefore, they cannot stop the label propagation from the remote memory frames to
the ambiguous query point. (c): By contrast, our adaptive matching module can handle this since we generate W), based on the dynamic property of each memory point
individually. If a memory point (e.g., point 1) can be tracked confidently to the query frame, the module would apply a distance-based constraint to the corresponding
weights even if they come from remote frames. As shown in the first column in (c), the ambiguous point is filtered out by the generated weights. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

higher than others. By contrast, less confident pQ leads to a “soft”
distribution, making all the weights in W), closer together.

From the above weight distributions, it is concluded that we
perform local matching for the memory points with confident
tracking locations and global matching for the others. The underly-
ing principle is that: For each memory point p, p¢ essentially pro-
vides a candidate location of p in the query frame. If §(pQ) is large,
it implies that the semantic element of p probably appears around
pQ in the query frame. Therefore, focusing on the local area around
pQ is enough to match p. Conversely, p might undergo heavy oc-
clusions or fast motion, resulting in small p<. In this case, it is hard
to locate p from only the local area around p<. Instead, a non-local
region is required. Since the proposed module assigns matching
schemes for each memory point individually, we can achieve much
more flexibility and adaptivity than most existing methods, which
usually use a similar matching plan for all memory points within
a frame. Fig. 5 illustrates the proposed module and its difference
from the existing methods.

We implement the adaptive matching on the coarsest scale only
for computation efficiency. For each memory point, a 2D Gaus-
sian kernel map is generated to represent its weight matrix since
the map perfectly matches the properties of weight distributions.
Therefore, given a memory point p, we have:

W, = Goa (p% 8 (pY)), (8)

where pQ and §(pQ) control the centre location and distribution

~

of the weight matrix, respectively. For each memory point p, we
generate pQ and §(pQ) by accumulating the local correspondence
between its original frame and the query frame. Assuming p comes
from the tth frame, we first illustrate how to compute the tracking
location for p in the (t + 1)th frame and the related confidence:

pt+1 = argminp/ S(Xf(ey.p’ Xlt(:;l”)
s(Xle X Yk o (9)
S(p“'l) _ ﬂexp(l TP keyp' Y

t t+1
$(Xiey, p-X ey, py J2nd

where s(Xf(EYYP,Xf(:; p/) measures the key feature similarity be-

tween p and p’. p’ e w is the point within a local window w in
the (t+1)th frame. B is a constant scaling parameter. It is ob-
served that pt*1 is located by retrieving the point most similar to it
within w. §(p'*1) corresponds to the uncertainty, measured by the
ratio between the first and second highest similarities. The higher
8(pt+1) is, the less the confidence of pt+!. When tracking p across
multiple frames, we generate pQ by concatenating the short-term
correspondence from all pairs of adjacent frames, which are lo-
cated between the tth and query (Qth) frames. Then, we select the
most uncertain point from the established track and consider its
uncertainty as 8(pQ), i.e., §(pQ) = max{é(pf+1)}§l=t+1.

With the generated p? and §(p?), our proposed matching mod-
ule can derive more adaptive and flexible W, 4 by (8) and therefore
boost the memory-based information propagation in (6).
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Quantitative comparison of different methods on DAVIS-2017 validation and test-dev sets. “~": Not given. The methods marked “*” considered 600p instead of the

standard 480p as the input resolution during inference on the test-dev set.

Methods Years 2017 validation set 2017 test-dev set FPS
J&F J F T&F J F
STM [5]* 2019 81.7 79.2 84.3 72.2 69.3 75.2 10.2
KMN [7]* 2020 82.8 80.0 85.6 77.2 74.1 80.3 <8.4
EGMN [6] 2020 82.8 80.2 85.2 - - - <2
LWL [39] 2020 81.6 79.1 84.1 - - - <6.0
AFB-URR (8] 2020 74.6 73.0 76.1 - - - 4
CFBI+ [14]* 2021 82.9 80.1 85.7 75.6 71.6 79.6 5.6
LCM [10] 2021 83.5 80.5 86.5 78.1 744 81.8 ~9.2
RMNet [11] 2021 83.5 81.0 86.0 75.0 71.9 78.1 <119
SwiftNet [9] 2021 81.1 78.3 83.9 - - - 25
HMMN [12] 2021 84.7 81.9 87.5 78.6 74.7 82.5 8
STCN [13] 2021 85.4 82.2 88.6 76.1 72.7 79.6 20.2
PMNet 2022 86.0 82.7 89.4 78.5 74.3 82.6 14.1

4. Experiments

We introduce the network structure, training and inference de-
tails in Section 4.1. Section 4.2 compares PMNet and state-of-the-
art SVOS methods. The relative contribution of each module is
studied in Section 4.3.

4.1. Implementation details

Framework We build PMNet on top of STCN [13], where key and
value encoders are implemented with the first 4 blocks of ResNet-
50 (with a 3 x 3 convolutional layer) and ResNet-18 [30] (with
a 3 x 3 convolutional layer). Value head is a 3 x 3 convolutional
layer. Fuse module consists of CNN layers and a Convolutional
Block Attention Module (CBAM [31]). We employ CNN layers and
fully-connected layers to construct the uncertainty detection mod-
ule and point processing module, respectively. The high-resolution
intermediate features are selected from both key and value en-
coders. The selection is based on the stride. Specifically, the query
features (stride = 8/4) are the output of the Block-3/2 of ResNet-
50. The memory values (stride = 4) are the output of the Block-2
of ResNet-18. The first layer of ResNet-18 is modified to accept 4-
channel input data (video frame + mask).

Training PMNet requires three learnable parameters: (1) back-
bone network (6); (2) uncertainty detection module (¢); (3) point
processing module (8). Note that we only perform adaptive match-
ing during inference since weighting features would distract the
embedding learning. During training, the backbone network and
point processing module are learned together, and we train them
and the uncertainty detection module alternatively. Specifically, we
freeze ¢ to train € and § and freeze 6 and § to train ¢. Similar
to other memory-based methods, we pre-train PMNet on image-
based datasets [32-36] and then perform the main training on
video datasets [37,38]. Since the uncertainty detection and point
processing modules rely on the decoding outputs, only the back-
bone network is optimised during pre-training. During the main
training, we initially measure uncertainty from the predicted prob-
abilities until the performance of the uncertainty detection mod-
ule remains stable. We employ the weighted cross-entropy loss for
both pre-training and main training, where the ratios in Eqn 1 and
Eqn 4 are set to 100% during initial iterations and then linearly re-
duced to 15% within subsequent iterations.

Inference Following [13], PMNet segments each video frame
sequentially. For each query frame, the memory frames are the
past/segmented frames, whose features have been encoded and
stored in the memory bank. We consider the first frame and in-
termediate frames (sampling interval is 5) as the memory frames
for the coarsest feature matching. During the point-based refine-

ment, we perform stridden global matching (Sgjopa is 2) on the
first frame and local matching (within a 15 x 15 window, therefore
Wioea) = 15) on the previous frame. As mentioned in Section 3.2.2,
we keep K as the 20% of the corresponding object’s area during
training and inference. In the adaptive matching module, we com-
pute local correspondence between adjacent frames within a 9 x 9
(w=9) window on the coarsest feature map. The scaling parame-
ter B in Eq. (9) is (8).

4.2. Comparison with state-of-the-art

This section compares PMNet with state-of-the-art SVOS meth-
ods on DAVIS 2017 (validation and test-dev sets [37]) and YouTube-
VOS (2018 and 2019 validation sets [38]), the most frequently used
testbeds for SVOS evaluation.

DAVIS (Densely Annotated Video Segmentation) 2017 This
dataset [37] consists of videos with high-resolution and dense an-
notations (all video frames are annotated with pixel-level labels),
most of which contain multiple target objects and challenges, e.g.,
occlusion and appearance changes. There are 150 videos in this
dataset, where 60 videos form the training set, the other 90 videos
are evenly split into the validation, test-dev, and test-challenge
sets. In most earlier methods, the validation set is the only DAVIS-
2017 subset for SVOS evaluation. Recently, many methods also take
the test-dev set into account since it consists of more challenging
videos. In this section, we compare our PMNet and state-of-the-art
methods on both validation and test-dev sets.

Like other SVOS methods, we use Jaccard-Index (abbreviated
as J, the Intersection over Union between object masks) and F-
measure (abbreviated as F, distances between contour points) for
evaluation. Table 1 demonstrates the quantitative results of our
PMNet and state-of-the-art methods on DAVIS-2017 validation and
test-dev sets. Besides accuracy, the table also compares the seg-
mentation efficiency (FPS, Frames segmented Per Second) of each
method.

The comparison results on the validation set show that our
PMNet outperforms the state-of-the-art methods in both region-
(+0.5%) and contour-based (+0.8%) measurements, which validate
the performance improvement brought by the point-based refine-
ment module. In addition, the adaptive matching module fur-
ther enhances the overall performance by suppressing the dis-
tractions from ambiguous regions. On the test-dev set, our PM-
Net can achieve competitive results with good computational ef-
ficiency. It is observed that HMMN [12] performs slightly better
than ours (0.1%). This is mainly because many test-dev videos con-
sist of objects with small areas and detailed structures, potentially
increasing the demands for multi-scale feature analysis. Since our
PMNet only extracts and utilises fine-grained features for uncer-
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Ground Truth

Fig. 6. Qualitative comparison between our method and other multi-scale matching-based methods (CFBI+ [14] and HMMN [12]) and our baseline model STCN [13]. Blue
boxes highlight the main difference between methods. Numbers deonte the indices of video frames.

tain regions only, its performance improvement on this set is lim-
ited. Better results can be computed (J&F: 78.8, J: 75.0, F: 82.8)
when considering more uncertain regions (e.g., improve K from
20% to 40%). However, such improvement is achieved at the cost
of more computation (FPS drops from 14.1 to 12.2). Therefore, we
keep K as 20% to better balance the SVOS accuracy and efficiency.

The qualitative results on DAVIS-2017 are shown in Fig. 6. It
is observed that our PMNet can handle not only the ambigu-
ous regions but also the challenging details with complex context.
To some extent, these results owe to our point-based refinement
module, which is mainly learned from hard samples and therefore
more robust against uncertain (challenging) regions.

YouTube-VOS Like DAVIS, this dataset [38] also consists of high-
resolution videos. However, the number of videos, frames and
annotations in YouTube-VOS is much larger than DAVIS. There-
fore, YouTube-VOS can activate and evaluate the performance of
SVOS methods in long-term modelling and generalisation. Cur-
rently, there are two versions of YouTube-VOS datasets: version
2018 (3471 training videos, 474 validation videos) and 2019 (3471
training videos, 507 validation videos), where YouTube-VOS-2019

is extended from YouTube-VOS-2018 by adding more challenging
videos and annotations. In this section, we compare our PMNet and
state-of-the-art methods on both versions.

To evaluate the generalisation performance, YouTube-VOS di-
vides its validation set into two groups based on object categories:
“seen” and “unseen”. The object belonging to “seen” categories res-
idents in both training and validation sets, and the ones belonging
to “seen” categories only residents in the validation set. Therefore,
the metrics in Tables 2 and 3 are still grouped into two subsets:
Tseen, Fseen» Junseen, aNd Funseen. From two tables, more significant
improvement in Fseen can be observed than Jseen, Which further
demonstrates the consistency of the point-based refinement mod-
ule across different datasets. However, the improvement in Fypseen
is limited; this suggests that the generalisation of our point-based
refinement module can be improved further.

Fig. 7 shows the qualitative comparisons on YouTube-VOS. As
mentioned in the DAVIS part, the proposed point-based refinement
module and adaptive matching module enable our PMNet to han-
dle the videos with different challenges, e.g., detailed structures,
complex context, and ambiguous appearance.
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Fig. 7. Qualitative comparison between our method and other multi-scale matching-based methods (CFBI+ [14] and HMMN [12]) and our baseline model STCN [13]. Blue
boxes highlight the main difference between methods. Numbers deonte the indices of video frames. Note that YouTube-VOS does not provide ground truth masks for the

validation set. Therefore, we list raw video frames only.

Table 2

Quantitative comparison of different methods on YouTube-VOS-2018 val-

idation set.
Methods Years g Jseen Fseen Junseen Funseen
STM [5] 2019 794 797 84.2 72.8 80.9
KMN [7] 2020 814 814 85.6 75.3 83.3
AFB-URR [8] 2020 79.6 78.38 83.1 74.1 82.6
LWL [39] 2020 802 783 82.3 75.6 84.4
CFBI+ [14] 2021 820 812 86.0 76.2 84.6
LCM [10] 2021 82.0 822 86.7 75.7 83.4
RMNet [11] 2021 815 821 85.7 75.7 82.4
SwiftNet [9] 2021 778 778 81.8 72.3 79.5
HMMN [12] 2021 826 821 87.0 76.8 84.6
STCN [13] 2021 83.0 819 86.5 77.9 85.7
PMNet 2022 836 825 87.6 784 85.9

4.3. Ablation studies

This section demonstrates the effect of each module in PMNet
on segmentation accuracy and efficiency. We choose STCN [13] as

10

Table 3

Quantitative comparison of different methods on YouTube-VOS-2019 val-
idation set. Methods marked “*” indicate their scores come from the
non-original works.

Methods Years g Jseen Fseen Junseen Funseen
STM [5]* 2019 79.4 79.8 83.8 73.0 80.5
KMN [7]* 2020 80.0 80.4 84.5 73.8 814

CFBI+ [14] 2021 829 806 85.2 78.9 86.8
HMMN [12] 2021 825 817 86.1 773 85.0
STCN [13] 2021 827 811 85.4 78.2 85.9
PMNet 2022 832 819 85.7 78.7 86.6

the baseline. The ablation studies are performed on the DAVIS-2017
validation and test-dev sets [37].

At first, we verify the effectiveness of the point-based refine-
ment module and compare different methods for uncertain region
detection. As shown in Table 4, the module improves both region-
based and contour-based performance with acceptable overhead.
Compared with the validation set, the module achieves more sig-
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Table 4

The effectiveness of the point-based refinement and adaptive matching modules, eval-
uated on both DAVIS-2017 validation and test-dev sets. “Point”, “Probs”, “Learn”, and
“Adapt” indicate the point-based refinement, probability-based uncertain point sam-
pling, learnable uncertain point sampling, and the adaptive matching module, respec-
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tively.

DAVIS sets ~ Point  Probs Learn Adapt J&F J F FPS

validation X X X X 85.4 82.2 88.6  20.2
v X X X 83.7 815 859 96
4 N X X 85.6 822 89.0 154
Vv X N X 85.7 823 892 152
X X X N 85.8 826 89.1 14.7
Vv X X v 84.6 81.7 875 838
v N X N 85.9 825 893 145
J X v N 86.0 82.7 894 141

test- X X X X 76.1 727 796  20.2

dev J X X X 743 720 766 9.6
J N X X 771 729 813 154
Vv X v X 77.2 73.1 814 152
X X X J 78.1 744 818 147
V X X v 76.0 734 786 88
N N X i 78.3 742 823 145
Vv X v v 78.5 743 826 141

Table 5

The effect of the point-based refinement module parameters on the segmentation per-
formance, evaluated on the DAVIS-2017 validation (v) and test-dev (t) sets.

Stride (Sgiobar)

Window size (Wigcar)

Sampling ratio (K)

Values
2 3 13 15 17 10% 20% 40%
J&F(v) 853 860 857 8.8 8.0 859 858 860 86.0
J&F (t) 779 785 782 782 785 783 78.1 785 788
FPS 12.8 141 147 140 1441 143 149 1441 12.2
Table 6

The effect of the adaptive matching module parameters on the segmentation performance, eval-
uated on the DAVIS-2017 validation (v) and test-dev (t) sets.

Window size (w)

Scaling factor (B)

Values
8 9 10 1 6 7 8 9 10
J&F (v) 858 859 860 859 857 858 859 860 860 859
J&F(t) 781 784 785 783 783 779 782 785 783 782
FPS 141 141 141 141 141 141 141 141 141 141
nificant improvement on the test-dev set since it consists of more Table 7

challenging videos. On both sets, the improvement in F is higher
than 7. This is because the point-based refinement module focuses
on fine-grained-level feature analysis, which is beneficial for the
objects with detailed structures. Although generating uncertainty
maps directly from probabilities is more efficient, this method fo-
cuses more on object contours, limiting the performance improve-
ment in uncertain regions away from contours. By contrast, the un-
certainty detection module in our method is lightweight and only
adds the overhead marginally. No matter whether using the adap-
tive matching module, the learnable module can bring better per-
formance. Therefore, we keep using the learnable module to detect
uncertain regions. In addition, we also evaluate the SVOS perfor-
mance without uncertain region detection, i.e., all feature points on
the finest scale are considered during matching. It is observed that
both the accuracy and efficiency drop significantly, which shows
that in most cases, the coarsest scale can bring good results. By
contrast, the compulsive multi-scale fusion probably encourages
segmentation models to focus more on the fine-grained features,
which have fewer semantic clues and are prone to be misled by
similar appearances.

Next, we verify the effectiveness of the adaptive matching mod-
ule, which is designed to suppress the distractions from ambigu-
ous regions. This module mainly improves the region-based accu-
racy J, as shown in Table 4. Compared with the validation set, the

1

The impact of different training strategies on the seg-
mentation performance, evaluated on the DAVIS-2017
validation (v) and test-dev (t) sets. “Epochs” indicates
from which epoch the uncertainty detection mod-
ule starts to serve the subsequent refinement proce-
dure. The module is trained for a total of 150 epochs.
Therefore, the last column means the uncertainty only
comes from the predicted probabilities.

Epochs 0 50 100 120 150
J&F (v)  85.1 857 860 858 858
J&F (t) 776  78.1 785 782 783

module achieves more significant improvement on the test-dev set
since more distracting scenes are involved in the test-dev videos,
which form the main factor causing ambiguous regions. With the
point-based refinement module, the overall performance is en-
hanced further while maintaining good segmentation efficiency.
Finally, we probe the choice of hyper-parameters in PMNet.
Specifically, we analyse the hyper-parameters from the point-based
refinement and adaptive matching modules in Tables 5 and 6, re-
spectively. We also analyse the incorporation between the uncer-
tainty detection module and the segmentation model in Table 7,
and the choice of similairty function in Table 8. For Tables 5 and
6, the results illustrate that most assignments can generate bet-
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Table 8

The impact of different distance measurements
on the segmentation performance, evaluated on
the DAVIS-2017 validation (v) and test-dev (t)

sets.
Distances L2 Dot product  Cosine
J&F (V) 86.0 845 84.3
J&F (t) 785 776 77.3

ter results than the baseline method (85.4 on the validation set,
76.0 on the test-dev set), further validating the effectiveness of the
proposed modules in PMNet. Table 7 probes the best time to in-
corporate the uncertainty detection module into the segmentation
model. The results show that performing incorporation in the mid-
dle or later stages can better leverage the uncertainty detection
module. In Table 8, it is observed that L2 distance can bring better
performance to both the SVOS method based on coarse matching
[13] and the one based on multi-scale matching (ours), further val-
idating its effectiveness in the memory-based SVOS.

5. Conclusion

In this paper, we have proposed PMNet for fine-grained SVOS.
Compared with other methods based on multi-scale feature match-
ing, our point-based refinement achieves a better balance between
SVOS accuracy and efficiency. In addition, the adaptive match-
ing further improves the overall performance by fusing multiple
matching schemes. Experimental results on DAVIS and YouTube-
VOS show that our method outperforms the state-of-the-art meth-
ods. In the future, we can extend this work to achieve further per-
formance improvement, such as more elaborate strategy for uncer-
tainty detection.

Data availability

Video Object Segmentation using Point-based Memory Network
(Mendeley Data).
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