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a b s t r a c t 

Recent years have witnessed the prevalence of memory-based methods for Semi-supervised Video Object 

Segmentation (SVOS) which utilise past frames efficiently for label propagation. When conducting feature 

matching, fine-grained multi-scale feature matching has typically been performed using all query points, 

which inevitably results in redundant computations and thus makes the fusion of multi-scale results in- 

effective. In this paper, we develop a new Point-based Memory Network, termed as PMNet, to perform 

fine-grained feature matching on hard samples only, assuming that easy samples can already obtain sat- 

isfactory matching results without the need for complicated multi-scale feature matching. Our approach 

first generates an uncertainty map from the initial decoding outputs. Next, the fine-grained features at 

uncertain locations are sampled to match the memory features on the same scale. Finally, the matching 

results are further decoded to provide a refined output. The point-based scheme works with the coars- 

est feature matching in a complementary and efficient manner. Furthermore, we propose an approach 

to adaptively perform global or regional matching based on the motion history of memory points, mak- 

ing our method more robust against ambiguous backgrounds. Experimental results on several benchmark 

datasets demonstrate the superiority of our proposed method over state-of-the-art methods. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Video Object Segmentation (VOS) is one of the fundamental 

roblems in video understanding. As the main branch of VOS, 

emi-supervised video object segmentation (SVOS) aims to infer 

he object masks in every frame using only masks annotated in the 

rst frame. SVOS focuses on target objects (the annotated objects) 

egmentation, which has significant value in several real-world 

pplications, such as video editing, summarisation, and surveil- 

ance [1,2] . 

Recently, matching-based methods have dominated the SVOS 

eld due to their robust and efficient implementations. The basic 

dea of these methods advocates the propagation of dense labels 

rom the reference frames (past frames) to the query frame (the 

rame to be segmented). Such a propagation is implicitly guided by 

he similarity of their features. The earlier matching-based meth- 

ds consider the first and previous frames as the reference to gen- 

rate the results with spatiotemporal consistency [3,4] . Under the 

mbrella of memory-based methods, new variants also utilise the 
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ntermediate frames between the first and previous frames, enrich- 

ng the object changes and further improving the state-of-the-art 

erformance at the cost of more memory consumptions [5–13] . 

For both methods, feature matching plays a vital role in fine- 

rained label prediction, which has been one of the major goals 

n general segmentation tasks, but has not been fully explored in 

VOS. Fig. 1 (a) summarises the primary matching-based methods. 

t is observed that the feature matching at the coarsest scale (with 

 stride of 16) builds a single connection between frames, which 

uides the coarse label propagation. However, when refining the 

ropagation, these methods only rely on high-resolution query fea- 

ures but ignore the reference frame labels on the same scales. 

herefore, the final results may not be consistent with the target 

bjects in the reference frames. 

To improve the fine-grained label propagation, recent works 

dvocated the use of multi-scale matching [12,14] . As shown in 

ig. 1 (b), the matching results on the finer scales (with strides of 4, 

) are measured and fused with the coarsest results. Therefore, the 

abel propagation is simultaneously constrained by high-level se- 

antic features and low-level detailed features. Although achieving 

igh-quality results, these methods share a common limitation, i.e., 

ll query feature points on all scales are considered during match- 

ng, resulting in a high degree of redundant computation. In re- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Comparison of different matching-based SVOS methods, mainly in what scales of features, and what point sampling approaches are involved during inference. (a) 

Most existing methods utilise the coarsest reference features and multi-scale query features (highlighted with the light green rectangle). Matching is done on the coarsest 

scale only, where query features are densely sampled (yellow points). (b) Multi-scale matching-based methods perform reference/query feature matching on multiple scales. 

For each scale, query features are densely sampled. (c) Our method still performs matching on the coarsest scale, where all query features are involved. However, on the 

finest scale, we only sample the uncertain points (highlighted red circles, where segmentation results are error-prone) and consider them for fine-grained matching. The 

segmentation results are predicted by STM [5] (a), HMMN [12] (b), and ours (c). The ROIs highlighted by yellow boxes are zoomed in for better comparison in fine-grained 

prediction. Best viewed in colour. . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Our contribution can be summarised as follows: 
lity, only the points with high-frequency signals require different 

rocesses on a finer scale, whereas the others can achieve satisfac- 

ory results even if the matching is conducted at the coarsest scale. 

oreover, considering all feature points distracts the learning from 

n effective fusion strategy between different scales of matching 

esults since most video frame points are “easy samples” and do 

ot require refinement. 

Inspired by the above observations, we propose a point-based 

efinement module to reduce redundant computations and focus 

n “hard samples” only, i.e., the spatial regions or points with 

mbiguous features, which confuse most existing SVOS methods 

o make correct and confident predictions. As shown in Fig. 1 (c), 

e first infer the initial masks from the coarsest matching results. 

hen, a set of uncertain points with potentially non-ideal results 

re derivated from the intermediate decoding outputs. During re- 

nement, our approach only considers these uncertain points for 

ne-grained feature matching. In this way, these points can serve 

s hard samples to encourage segmentation modules to be more 

ffective against ambiguous features. To improve the confidence of 

he uncertain points, we implement an uncertainty detection mod- 

le with a lightweight CNN architecture, which generates uncer- 

ainty maps from the intermediate decoding outputs (with differ- 

nt scales). 

To the best of our knowledge, the proposed SVOS algorithm is 

he first approach to implement the point-based refinement, which 

tilises detailed low-level features more efficiently than multi-scale 

atching [12,14] . Although AFB-URR [8] also computes the uncer- 

ain regions to refine the initial results, all query points are still 

nvolved. In addition, AFB-URR [8] only relies on the confident 

esults to refine their neighbouring uncertain regions. Therefore, 

he effect of its refinement module is limited. Compared with the 

oint-based refinement for other tasks, our proposed method re- 

ains competitive. Kirillov et al. [15] measures a set of uncertain 

egions from the ambiguous probabilities and refines them with 

ne-grained features. Zhang et al. [16] first predicts initial masks 

rom the coarsest features and then improves the boundary re- 

ions with fine-grained features. Although these methods also re- 

ort fine-grained features for refinement, they mainly focus on the 

mbiguous boundaries, which come from the final predictions. In 

ontrast, our method implements a learnable module to predict 

otential errors from different scales of intermediate decoding out- 

uts. As a result, more hard samples can be mined to enhance the 

efinement module. 
2 
Besides the fine-grained feature matching, temporal consistency 

s also essential for high-quality segmentation results. However, 

ost memory-based methods [5,6,8,9,13] ignore temporal informa- 

ion and only perform global matching between frames. Although 

chieving good robustness against occlusions and fast motion, the 

ethods are sensitive to the regions similar to target objects. In 

ore recent developments [10–12] , this problem has been miti- 

ated by incorporating local matching, which replies on a sensi- 

le assumption that objects move smoothly throughout video se- 

uences. During local matching, recent frames could provide rea- 

onable spatial-temporal constraints to filter out ambiguous re- 

ions. Given the complementary nature of global and local match- 

ng, it is evident that a fusion strategy would benefit to segmen- 

ation performance. However, this has been underexplored in ex- 

sting methods. LCM [10] and HMMN [12] perform local match- 

ng on recent reference frames and global matching on distant ref- 

rence frames. Although such a strategy can handle most cases, 

ome challenges remain (e.g., the ambiguity when matching with 

istant reference frames). Alternatively, RMNet [11] performs local 

atching on all reference frames. However, since only short-term 

patial-temporal constraints are applied (from optical flow), match- 

ng with distant reference frames would lose some informative 

orrelations, thus requiring an additional mechanism for comple- 

ents. Therefore, to handle more challenging videos efficiently, an 

daptive and compact approach is required to fuse different kinds 

f matching schemes. 

Unlike existing methods [10–12] , which apply the same match- 

ng scheme to all the feature points from the same reference frame, 

e propose to deal with them differently using appropriate match- 

ng schemes. To this end, we build point trajectories from refer- 

nce frames to the query frame, based on the intermediate results 

uring segmentation. For each reference feature point, its match- 

ng scheme depends on the changes it has experienced along the 

orresponding path. For example, if one point has undergone only 

light changes between frames, it should be locally matched with 

uery points, even if it comes from a distant reference frame. On 

he contrary, the global matching should be performed on the 

oints experiencing drastic changes, even they come from recent 

eference frames. In this way, the proposed adaptive matching 

odule can break the limitations of temporal distance and adapt 

eature matching to video contexts. 
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1) We propose a point-based refinement module, which resorts 

to multi-scale feature matching to improve segmentation re- 

sults. But unlike the existing methods, the proposed module 

only considers the uncertain points rather than all the points 

when performing matching on the finer scales. Therefore, sim- 

ilar or even better results can be achieved with less computa- 

tion. 

2) We propose an adaptive matching module, which flexibly as- 

signs each memory feature point (spatially basic component in 

memory feature maps) with an appropriate matching scheme, 

according to its dynamic information throughout the video. 

Compared with the existing matching-based methods, which 

solely rely on either global or temporal distance-based match- 

ing schemes, the proposed module can better adapt to video 

contexts and achieve better complementary between different 

matching schemes. 

3) The proposed method (Point-based Matching Network, termed 

as PMNet) achieves the state-of-the-art performance on several 

benchmark datasets while retaining competitive efficiency. 

. Related work 

Earlier methods perform SVOS mainly based on discriminative 

eature descriptors and motion information [17,18] . More recently, 

eep learning techniques have prompted SVOS performance con- 

iderably due to their robust feature representations. This sec- 

ion gives a brief overview of the deep learning-based SVOS meth- 

ds by different strategies they utilise. 

.1. Online fine-tuning-based SVOS 

This approach is firstly proposed in OSVOS [19] , which fine- 

unes segmentation networks with the first frame annotations, 

hifting the output domain from general objects to the annotated 

nes. Extended from OSVOS, OnAVOS [20] further fine-tuned net- 

orks with confident segmentation results. OSVOS-S [21] com- 

lements the segmentation results with the semantic information 

f the annotated objects. Despite achieving good results, online 

ne-tuning is rarely explored in recent works since it is time- 

onsuming and easy to overfit. 

.2. Propagation-based SVOS 

This approach is firstly proposed in MaskTrack [22] , which as- 

umes objects move smoothly throughout the sequence. There- 

ore, the objects predicted from the previous frame can well es- 

imate the current segmentation. Due to its efficient implementa- 

ion, mask propagation has been widely used in subsequent SVOS 

orks. The representative improvement mainly lies in adapting the 

ropagated masks to the current frame [23] . To mitigate the er- 

or accumulation, ARG-VOS [24] implemented two reinforcement 

earning-based models to adapt the previous results to the current 

rame context. Despite being efficient, these methods are vulnera- 

le to occlusions and fast motion. 

Besides the short-term propagation, the approaches dedicated 

o long-term spatiotemporal information propagation are also 

tilised for SVOS. For instance, ConvLSTM-based methods [25] and 

onvGRU-based methods [6] . Theoretically, this approach can 

earn long-term dependency. However, limited by computation re- 

ources, their models can only be optimised with short video clips, 

hich degrades the expected SVOS performance. 

.3. Matching-based SVOS 

Unlike online fine-tuning, this approach segments the target 

bjects by measuring cross-frame feature correspondence rather 
3 
han fine-tuning network parameters. Therefore, more efficiency 

an be achieved during inference. Currently, there are mainly two 

atching strategies for SVOS: ROI matching and dense matching. 

he former tracks and segments the ROIs of either the whole ob- 

ect [26] or object parts [27] throughout the sequences. However, 

ince the ROI-level matching is sensitive to partial loss, this ap- 

roach cannot handle the sequences with heavy occlusions. In con- 

rast, the latter utilises dense matching results to implicitly guide 

he label propagation between frames. The conventional dense 

atching-based SVOS methods initialise the reference with the 

rst frame annotation and enrich it with subsequent confident re- 

ults [28] . To suppress ambiguous backgrounds and achieve the 

esults with temporal smoothness, other matching-based meth- 

ds considered the previous frame during inference. For instance, 

GMP [3] integrates previous frame masks into the matching be- 

ween the first and query frames. FEELVOS [4] explicitly performs 

eature matching between the previous and query frames. The re- 

ulting local correspondence complements the global matching be- 

ween the first and query frames well. Instead of focusing on the 

bject regions only, CFBI [29] performs feature matching on both 

bject and background, encouraging the feature embedding to be 

ontrastive. As an extension of CFBI [29] , CFBI+ [14] further im- 

roves the SVOS performance by multi-scale feature matching. 

.4. Memory-based SVOS 

This approach was firstly proposed in STM [5] , which en- 

bles the segmentation network to be more robust against object 

hanges (e.g., scale and appearance) by considering additional past 

rames as the reference frames (memory frames). STM [5] outper- 

ormed state-of-the-art methods on all benchmark datasets at the 

ime of publication and therefore attracted much attention in the 

ommunity. Several recently proposed methods have attempted to 

mprove specific aspects of STM: 

1) Temporal correspondence between memory frames, imple- 

mented in EGMN [6] . This approach proposes a graph-based 

scheme to highlight the background and frequently appearing 

objects in memory frames. 

2) Memory management, implemented in AFB-URR [8] and Swift- 

Net [9] . Instead of considering the whole past frames, these ap- 

proaches only store useful and discriminative points in memory 

to avoid redundant computation and improve memory usage. 

3) Local feature matching, implemented in KMN [7] , LCM [10] , and 

RMNet [11] . These approaches perform feature matching within 

a local area of the memory and/or query frames based on tem- 

poral smoothness [10,11] or mutual matching [7] . 

4) Multi-scale feature matching, implemented in HMMN [12] . This 

approach improves the quality of segmentation results by per- 

forming matching on feature maps at different resolutions. 

5) Efficient similarity metrics, implemented in STCN [13] . This ap- 

proach reveals that the dot product in memory-based meth- 

ods degraded feature utilisation and replaced it with a com- 

putationally efficient L2 distance. In addition, the architecture 

of feature encoders are simplified. These contributions intro- 

duced a considerable improvement in both accuracy and effi- 

ciency and set a new benchmark for memory-based SVOS. 

Due to the good balance between SVOS accuracy and efficiency, 

e build our method upon a memory-based approach. From the 

bove descriptions, it is observed that multi-scale feature match- 

ng has not been fully explored. Therefore, our method can achieve 

urther improvement and inspire future research. In addition, the 

xisting memory-based SVOS methods cannot well balance local 

nd global matching between frames. Our adaptive matching strat- 

gy shrinks the gap by linking the memory feature points across 

rames. 
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Fig. 2. An overview of our PMNet. The point-based refinement module improves decoding results with high-resolution query keys, memory keys (both from the key encoder) 

and memory values (from the memory value encoder). The adaptive matching module utilises the motion histories of memory points to suppress ambiguous backgrounds. 

Both contributions are highlighted in red bold fonts. Yellow boxes show the main difference between the initial and refined results. Please refer to Section 4.1 for more 

implementation details. Best viewed in colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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. Method 

We propose Point-based Memoty Network (PMNet) for fine- 

rained SVOS. Section 3.1 overviews the proposed architecture. In 

ection 3.2 , we introduce the point-based refinement module. The 

daptive matching module is presented in Section 3.3 . 

.1. Overview 

Fig. 2 illustrates the overall architecture of PMNet. Analogously 

o other memory-based methods, PMNet encodes video frames 

nto keys and values, where keys are light-weight embeddings 

or similarity measurement; values are formed with more chan- 

els of information and used for feature aggregation and decoding. 

pecifically, our backbone network is designed based on STCN [13] , 

hich utilises the shared encoder for query/memory keys and 

uery values, a lightweight encoder for memory values. Although 

he decoder considers high-resolution query features (with strides 

f 4 and 8) to generate fine-grained outputs, the memory labels on 

he same scales are ignored. In other words, STCN [13] and most 

xisting memory-based SVOS methods [5–11,13] refine their results 

ith coarse labels only. Therefore, the predicted objects might dif- 

er from the target in some details. 

We address this issue with a refinement scheme, where high- 

esolution memory labels are taken into account in order to im- 

rove the initial results. To maintain competitive efficiency, we im- 

lement the scheme with point-based refinement module, where 

nly uncertain results are involved. The module is presented in 

ection 3.2 . In addition, we propose an adaptive matching module 

o suppress ambiguous backgrounds. During inference, the tracking 

onfidence of the memory points determine whether the global 

atching or local matching is performed. More details can be 

ound in Section 3.3 . 

Before proceeding, we provide the necessary definitions about 

MNet here. As shown in Fig. 2 , PMNet mainly consists of 

hree parts: backbone ( f backbone with learnable parameters θ , in- 

luding encoders, value head, fuse module, and decoder), point- 

ased refinement module (including uncertainty detection module 

f uncertain and point processing module f point , with learnable pa- 

ameters φ and γ , respectively), and adaptive matching module 

non-learnable). Given a query frame I Q ∈ R 

H×W ×3 and T memory 
4 
rames I M ∈ R 

T ×H×W ×3 , where H and W indicate the height and 

idth dimensions, PMNet performs SVOS mainly in three steps: 

1) Prepare multi-scale features with f backbone , including query 

features ( X 

Q 
4 

∈ R 

H/ 4 ×W/ 4 ×256 , X 

Q 
8 

∈ R 

H/ 8 ×W/ 8 ×512 , and X 

Q 
16 

∈ 

R 

H/ 16 ×W/ 16 ×1024 ) and memory features ( X 

M 

4 ∈ R 

T ×H/ 4 ×W/ 4 ×256 

and X 

M 

16 ∈ R 

T ×H/ 16 ×W/ 16 ×1024 ). 

2) Encode the coarsest query/memory keys ( X 

Q 
key , 16 

∈ 

R 

H/ 16 ×W/ 16 ×64 , X 

M 

key , 16 ∈ R 

T ×H/ 16 ×W/ 16 ×64 ) and values 

( X 

Q 
value , 16 

∈ R 

H/ 16 ×W/ 16 ×512 , X 

M 

value , 16 ∈ R 

T ×H/ 16 ×W/ 16 ×512 ) with 

f backbone and perform the adaptive matching to get the initial 

segmentation results. 

3) Employ f uncertain to detect uncertain points from the intermedi- 

ate decoding outputs (generated when predicting the initial re- 

sults). Then, utilise f point to encode point-wise query/memory 

keys and values from X 

Q 
4 

, X 

M 

4 , and X 

Q 
v , 4 

, and leverage point- 

based matching to refine the initial results. 

.2. Point-based refinement module 

The module aims to improve the fine-grained SVOS while keep- 

ng competitive efficiency. As shown in Fig. 3 , it performs refine- 

ent in three steps: (1) uncertainty detection from decoding out- 

uts (with f uncertain ); (2) fine-grained feature matching and aggre- 

ation on uncertain points (with f point ); (3) point-based refinement 

n uncertain points (with f point ). More details are in order. 

.2.1. Uncertainty detection 

The module detects uncertain points where the initial results 

re error-prone. The existing SVOS method [8] achieves this only 

rom the predicted probabilities. Despite being efficient, the un- 

ertain regions mainly focus on object boundaries and have lit- 

le response inside the object or background regions. The uncer- 

ain region here indicates a set of spatially connected uncertain 

oints. an uncertain region could be a spatially isolated uncertain 

oint or any number of the spatially connected uncertain points. 

nstead of relying on the probabilities, we utilise more clues to de- 

ect potentially erroneous results. As shown in Fig. 4 , we propose 

 lightweight CNN-based module to generate the uncertainty map: 
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Fig. 3. Diagram of our point-based refinement module, which consists of two learnable modules: f uncertain (uncertainty detection module) and f point (all other modules). At 

first, the uncertainty map is generated from the decoding outputs ( Section 3.2.1 , corresponding to the red data flow). Then, fine-grained feature matching and aggregation 

are performed on the uncertain points only ( Section 3.2.2 , corresponding to the blue data flow). Finally, the aggregated features are fused with the initial decoding results 

to further refine the initial predictions ( Section 3.2.3 , corresponding to the dark green data flow). All heads here are implemented with one FC layer. More details about the 

uncertainty detection module are shown in Fig. 4 . Best viewed in colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 4. (a) Diagram of our uncertainty detection module, which generates an uncertainty map U ∈ R H/ 4 ×W/ 4 from the intermediate decoding outputs: ( D 16 ∈ R H/ 16 ×W/ 16 ×256 , 

D 8 ∈ R H/ 8 ×W/ 8 ×256 , and D 4 ∈ R H/ 4 ×W/ 4 ×256 ). H and W denote the height and width of video frames. The numbers around data flows (arrows) indicate the corresponding data 

dimensions and strides. We apply the stop gradient (sg) between decoder blocks and the module to focus our backbone network on the segmentation task only. (b) Top: The 

input video frame with the initial results (green mask). Yellow boxes are the ROIs for detailed analysis. Bottom: The generated uncertainty map U ∈ R H/ 4 ×W/ 4 , Middle: ROIs 

zoomed from initial results and the corresponding uncertainty map. (c) Top: The input video frame with the refined results (green mask), Bottom: Uncertain points sampled 

from the uncertainty map. The sampling is constrained by the red box, which contains the initial segmentation results (with 120% of the original height and width to avoid 

under-sampling), Middle: ROIs zoomed from the refined results and corresponding uncertainty points. Best viewed in colour. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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w

 = f uncertain ( D , φ)) ∈ R 

H/ 4 ×W/ 4 , where D = { D 16 , D 8 , D 4 } are inter-

ediate decoding outputs (with strides of 16, 8, and 4). The pa- 

ameters φ in f uncertain are optimised by minimising a weighted 

mooth L1 loss: 

 uncertain = 

1 ∑ 

i ∈ � w i 

∑ 

i ∈ �
w i L smoothL1 ( U i , U 

∗
i ) , (1) 

where U i is the uncertainty at the location i , U 

∗ = 

 f backbone ( I 
Q , I M , θ ) − M | is the difference between the predicted 

ropabilities ( ∈ [0 , 1] H/ 4 ×W/ 4 ) and the down-sampled ground truth 

ask M ∈ { 0 , 1 } H/ 4 ×W/ 4 . w i = 1 if U i belongs to the top ratio %

ncertainty points and w i = 0 otherwise. 

From U , we sample uncertain points with top K uncertainty val- 

es. K depends on the size of the corresponding object. As shown 

n Fig. 4 , we first generate a box containing the initial object mask, 

ith 120% of original height and width to avoid under-sampling. 

hen, we select the points with top 20% uncertainty from U , i.e., K

s 20% of the box’s area. 

.2.2. Point-based feature matching and aggregation 

Based on the uncertain points, we select K query feature vectors 

rom X Q 
4 

and feed them into Q-Key/Value heads to encode query 

eys ( X Q 
key , 4 

∈ R 

K×64 ) and values ( X Q 
value , 4 

∈ R 

K×512 ). To achieve a

etter balance between the SVOS accuracy and efficiency, we only 

ample M memory feature points from the first and previous 

rames for point-based matching and refinement. Specifically, we 

ample H × W/ 4 s 2 
global 

points from the first frame, where s global is 

he interval for stridden sampling. For the previous frame, we only 

onsider a local window ( w local × w local ) around each query fea- 

ure point. Therefore, M = H × W/ (4 s global ) 
2 + w 

2 
local 

for each query

eature point. We utilise M-Key/Fusion heads to generate X M 

key , 4 
∈ 

 

M×64 and X M 

value , 4 
∈ R 

M×512 from X M 

4 
and X M 

v , 4 
. For each location i

n X Q 
key , 4 

, its L2 similarity with M corresponding fine-grained mem- 

ry features X M 

key , 4 ,i 
is measured by: 

 i, j = || X 

Q 
key , 4 ,i 

− X 

M 

key , 4 ,i, j || 2 . (2) 

S ∈ R 

K×M can be efficiently estimated via the simplified ap- 

roach in Cheng et al. [13] , which formulates L2 distance as the 

ensor multiplication. Next, the affinity is processed by softmax 

nd used as weights to sum the memory values: 

 

M 

sum , 4 = softmax (S) dim =1 × X 

M 

value , 4 . (3) 

Then, X 

M 

sum , 4 ∈ R 

K×512 is concatenated with X 

Q 
value , 4 

∈ R 

K×512 to 

ggregate the fine-grained query and memory features: X agg , 4 ∈ 

 

K×1024 . 

.2.3. Point-based refinement 

As shown in Fig. 3 , X agg , 4 ∈ R 

K×1024 is processed by three FC 

ayers to further enhance the aggregation and reduce the feature 

imensions from 1024 to 256. Then, it is added to the uncertain 

ecoding outputs Uncertain ( D 4 ) ∈ R 

K×256 . Finally, the refinement is 

chieved by feeding the added features into another module with 

hree FC layers. 

.2.4. Optimisation 

As mentioned above, we define all heads and FC layers as a uni- 

ed point processing module f point , whose parameters γ are opti- 

ised together with backbone parameters θ by minimising a com- 

ined loss: 

 = 

1 ∑ 

i ∈ � w i 

∑ 

i ∈ � w i L coarse ( f backbone ( I 
Q 
, I M 

, θ ) i , M i ) 

+ λ 1 
K 

∑ 

k ∈ topK( U ) L fine ( f point ( D 4 , X , γ ) k , M k ) , 
(4) 
6 
here X = { X 

Q 
4 
, X 

M 

4 , X 

M 

v , 4 } are the fine-grained features, topK( U ) 

s a set with K uncertain points. L coarse and L fine are both cross- 

ntropy loss. w i = 1 if the loss on the location i belongs to the top

atio% losses and w i = 0 otherwise. 

.3. Adaptive matching module 

The module aims to mitigate the ambiguity issue when match- 

ng between memory and query features. In most memory-based 

VOS methods, all memory feature points are considered equally, 

aking these methods vulnerable to ambiguous backgrounds. By 

ontrast, our method builds trajectories from memory to query 

oints. With the trajectories and corresponding confidences, each 

uery feature point will be matched with the relevant memory 

eature points only, potentially suppressing the ambiguity within 

emory features. 

Given the embedded key features of memory and query frames: 

 

M 

key ∈ R 

T ×H×W ×64 and X 

Q 
key 

∈ R 

H×W ×64 , existing memory-based 

ethods firstly compute the point-wise similarities between them: 

 p,q = s( X 

M 

key ,p , X 

Q 
key ,q 

) , (5) 

here H, W , 64, and T represent the height, width, channel, and 

emporal dimensions. p and q are memory and query feature 

oints. s(·) usually measures cosine similairty or L2 distance. Upon 

he similarities, the methods propagate the information implying 

abels from memory frames to the query frame. For each query 

oint q , the propagation is implemented by aggregating the value 

eatures of all points. This procedure can be formulated as: 

 

M 

agg ,q = 

∑ 

p 

( 
W p,q · exp (S p,q ) ∑ 

p W p,q · exp (S p,q ) 
· X 

M 

value ,p ) , (6) 

here W p,q is the parameter to weigh point-wise similarities, used 

o formulate different matching schemes in a uniform way. The 

lobal matching-based methods [5,6,8,9,13] usually fix W p,q as a 

onstant, which indicates all similarities are considered equally 

uring inference. As mentioned in Section 1 , these methods can- 

ot well handle ambiguous regions. To mitigate this problem, some 

ecent methods [10,12] consider the spatial-temporal distance be- 

ween points to define W p,q , which increases when p and q are 

pproaching. However, such constraint gradually fades for distant 

emory frames during inference since the increase of temporal 

istance makes W p,q related to these frames closer together. This 

akes sense because the foreground objects from remote frames 

robably experience heavy changes in location. However, the am- 

iguity problem remains when matching with remote frames. 

We propose an adaptive matching module to alleviate the am- 

iguity problem while achieving robustness against occlusions and 

ast motion. Instead of using the constant or time-conditioned 

eights, our module generates weights for each memory point in- 

ividually, based on its dynamic property from the original frame 

o the query frame. Here, memory point indexes the spatially ba- 

ic component in the memory feature map. Specifically, the weight 

etween a memory point p and query point q is obtained by: 

 p,q = f weight (d(p Q , q ) , δ(p Q )) , (7) 

here p Q is the tracking location of point p in the query frame. 

(·, ·) measures the spatial distance between points. W p,q increases 

hen p Q and q are approaching. For each memory point p, the re- 

ated W p,q form a matrix: W p ∈ R 

H×W , which corresponds to the 

eights between p and all points in the query frame. Due to the 

ynamic nature of videos, the tracking location p Q might not al- 

ays be perfect. Therefore, we measure the tracking confidence 

(p Q ) to control the distribution of W p . Specifically, the distri- 

ution becomes “sharp” when p Q is confident. As a result, the 

eights corresponding to the query points close to p Q are much 
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Fig. 5. The main idea of our adaptive matching module and its difference from the existing methods. Top row : The red arrows form a point trajectory from a remote memory 

frame to the query frame (point 1 → point 2 → point3 → point 4). Point 5 (highlighted in blue) looks similar to point 1 (belong to the target object). Therefore it is an 

ambiguous point. (a) : The global matching-based methods (whose W p,q is constant) cannot handle this since they consider all similarities equally. Therefore, when matching 

with the remote memory frame, the high similarity between points 1 and 5 leads to false label propagation. (b) : The existing local matching-based methods (whose W p,q 

is time-conditioned) cannot handle this since they only apply the distance-based constraint to the recent memory frames. With temporal distance increasing, the weight 

matrices of remote memory points gradually tend to consider all similarities equally. Therefore, they cannot stop the label propagation from the remote memory frames to 

the ambiguous query point. (c) : By contrast, our adaptive matching module can handle this since we generate W p,q based on the dynamic property of each memory point 

individually. If a memory point (e.g., point 1) can be tracked confidently to the query frame, the module would apply a distance-based constraint to the corresponding 

weights even if they come from remote frames. As shown in the first column in (c), the ambiguous point is filtered out by the generated weights. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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igher than others. By contrast, less confident p Q leads to a “soft”

istribution, making all the weights in W p closer together. 

From the above weight distributions, it is concluded that we 

erform local matching for the memory points with confident 

racking locations and global matching for the others. The underly- 

ng principle is that: For each memory point p, p Q essentially pro- 

ides a candidate location of p in the query frame. If δ(p Q ) is large,

t implies that the semantic element of p probably appears around 

p Q in the query frame. Therefore, focusing on the local area around 

p Q is enough to match p. Conversely, p might undergo heavy oc- 

lusions or fast motion, resulting in small p Q . In this case, it is hard

o locate p from only the local area around p Q . Instead, a non-local 

egion is required. Since the proposed module assigns matching 

chemes for each memory point individually, we can achieve much 

ore flexibility and adaptivity than most existing methods, which 

sually use a similar matching plan for all memory points within 

 frame. Fig. 5 illustrates the proposed module and its difference 

rom the existing methods. 

We implement the adaptive matching on the coarsest scale only 

or computation efficiency. For each memory point, a 2D Gaus- 

ian kernel map is generated to represent its weight matrix since 

he map perfectly matches the properties of weight distributions. 

herefore, given a memory point p, we have: 

 p = G 2d (p Q , δ(p Q )) , (8) 

here p Q and δ(p Q ) control the centre location and distribution 
7 
f the weight matrix, respectively. For each memory point p, we 

enerate p Q and δ( p Q ) by accumulating the local correspondence 

etween its original frame and the query frame. Assuming p comes 

rom the t th frame, we first illustrate how to compute the tracking 

ocation for p in the (t + 1) th frame and the related confidence: 

 

p t+1 = argmin p ′ s ( X 

t 
key ,p , X 

t+1 
key ,p ′ ) 

δ(p t+1 ) = β exp (1 − s ( X t key ,p , X 
t+1 

key ,p ′ ) 1 st 

s ( X t key ,p , X 
t+1 

key ,p ′ ) 2 nd 

) 
, (9) 

here s ( X 

t 
key ,p , X 

t+1 
key ,p ′ ) measures the key feature similarity be- 

ween p and p ′ . p ′ ∈ w is the point within a local window w in

he (t + 1) th frame. β is a constant scaling parameter. It is ob- 

erved that p t+1 is located by retrieving the point most similar to it 

ithin w . δ(p t+1 ) corresponds to the uncertainty, measured by the 

atio between the first and second highest similarities. The higher 

(p t+1 ) is, the less the confidence of p t+1 . When tracking p across 

ultiple frames, we generate p Q by concatenating the short-term 

orrespondence from all pairs of adjacent frames, which are lo- 

ated between the t th and query ( Q th ) frames. Then, we select the 

ost uncertain point from the established track and consider its 

ncertainty as δ(p Q ) , i.e., δ(p Q ) = max { δ(p i +1 ) } Q 
i = t+1 

. 

With the generated p Q and δ(p Q ) , our proposed matching mod- 

le can derive more adaptive and flexible W p,q by (8) and therefore 

oost the memory-based information propagation in (6) . 
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Table 1 

Quantitative comparison of different methods on DAVIS-2017 validation and test-dev sets. “–”: Not given. The methods marked “∗” considered 600p instead of the 

standard 480p as the input resolution during inference on the test-dev set. 

Methods Years 2017 validation set 2017 test-dev set FPS 

J & F J F J & F J F

STM [5] ∗ 2019 81.7 79.2 84.3 72.2 69.3 75.2 10.2 

KMN [7] ∗ 2020 82.8 80.0 85.6 77.2 74.1 80.3 < 8.4 

EGMN [6] 2020 82.8 80.2 85.2 – – – < 2 

LWL [39] 2020 81.6 79.1 84.1 – – – < 6.0 

AFB-URR [8] 2020 74.6 73.0 76.1 – – – 4 

CFBI + [14] ∗ 2021 82.9 80.1 85.7 75.6 71.6 79.6 5.6 

LCM [10] 2021 83.5 80.5 86.5 78.1 74.4 81.8 ∼9.2 

RMNet [11] 2021 83.5 81.0 86.0 75.0 71.9 78.1 < 11.9 

SwiftNet [9] 2021 81.1 78.3 83.9 – – – 25 

HMMN [12] 2021 84.7 81.9 87.5 78.6 74.7 82.5 8 

STCN [13] 2021 85.4 82.2 88.6 76.1 72.7 79.6 20.2 

PMNet 2022 86.0 82.7 89.4 78.5 74.3 82.6 14.1 
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. Experiments 

We introduce the network structure, training and inference de- 

ails in Section 4.1 . Section 4.2 compares PMNet and state-of-the- 

rt SVOS methods. The relative contribution of each module is 

tudied in Section 4.3 . 

.1. Implementation details 

Framework We build PMNet on top of STCN [13] , where key and 

alue encoders are implemented with the first 4 blocks of ResNet- 

0 (with a 3 × 3 convolutional layer) and ResNet-18 [30] (with 

 3 × 3 convolutional layer). Value head is a 3 × 3 convolutional 

ayer. Fuse module consists of CNN layers and a Convolutional 

lock Attention Module (CBAM [31] ). We employ CNN layers and 

ully-connected layers to construct the uncertainty detection mod- 

le and point processing module, respectively. The high-resolution 

ntermediate features are selected from both key and value en- 

oders. The selection is based on the stride. Specifically, the query 

eatures (stride = 8/4) are the output of the Block-3/2 of ResNet- 

0. The memory values (stride = 4) are the output of the Block-2 

f ResNet-18. The first layer of ResNet-18 is modified to accept 4- 

hannel input data (video frame + mask). 

Training PMNet requires three learnable parameters: (1) back- 

one network ( θ ); (2) uncertainty detection module ( φ); (3) point 

rocessing module ( δ). Note that we only perform adaptive match- 

ng during inference since weighting features would distract the 

mbedding learning. During training, the backbone network and 

oint processing module are learned together, and we train them 

nd the uncertainty detection module alternatively. Specifically, we 

reeze φ to train θ and δ and freeze θ and δ to train φ. Similar 

o other memory-based methods, we pre-train PMNet on image- 

ased datasets [32–36] and then perform the main training on 

ideo datasets [37,38] . Since the uncertainty detection and point 

rocessing modules rely on the decoding outputs, only the back- 

one network is optimised during pre-training. During the main 

raining, we initially measure uncertainty from the predicted prob- 

bilities until the performance of the uncertainty detection mod- 

le remains stable. We employ the weighted cross-entropy loss for 

oth pre-training and main training, where the ratios in Eqn 1 and 

qn 4 are set to 100% during initial iterations and then linearly re- 

uced to 15% within subsequent iterations. 

Inference Following [13] , PMNet segments each video frame 

equentially. For each query frame, the memory frames are the 

ast/segmented frames, whose features have been encoded and 

tored in the memory bank. We consider the first frame and in- 

ermediate frames (sampling interval is 5) as the memory frames 

or the coarsest feature matching. During the point-based refine- 
8 
ent, we perform stridden global matching ( s global is 2) on the 

rst frame and local matching (within a 15 × 15 window, therefore 

 local = 15 ) on the previous frame. As mentioned in Section 3.2.2 ,

e keep K as the 20% of the corresponding object’s area during 

raining and inference. In the adaptive matching module, we com- 

ute local correspondence between adjacent frames within a 9 × 9 

 w = 9 ) window on the coarsest feature map. The scaling parame- 

er β in Eq. (9) is (8) . 

.2. Comparison with state-of-the-art 

This section compares PMNet with state-of-the-art SVOS meth- 

ds on DAVIS 2017 (validation and test-dev sets [37] ) and YouTube- 

OS (2018 and 2019 validation sets [38] ), the most frequently used 

estbeds for SVOS evaluation. 

DAVIS (Densely Annotated VIdeo Segmentation) 2017 This 

ataset [37] consists of videos with high-resolution and dense an- 

otations (all video frames are annotated with pixel-level labels), 

ost of which contain multiple target objects and challenges, e.g., 

cclusion and appearance changes. There are 150 videos in this 

ataset, where 60 videos form the training set, the other 90 videos 

re evenly split into the validation, test-dev, and test-challenge 

ets. In most earlier methods, the validation set is the only DAVIS- 

017 subset for SVOS evaluation. Recently, many methods also take 

he test-dev set into account since it consists of more challenging 

ideos. In this section, we compare our PMNet and state-of-the-art 

ethods on both validation and test-dev sets. 

Like other SVOS methods, we use Jaccard–Index (abbreviated 

s J , the Intersection over Union between object masks) and F - 

easure (abbreviated as F , distances between contour points) for 

valuation. Table 1 demonstrates the quantitative results of our 

MNet and state-of-the-art methods on DAVIS-2017 validation and 

est-dev sets. Besides accuracy, the table also compares the seg- 

entation efficiency (FPS, Frames segmented Per Second) of each 

ethod. 

The comparison results on the validation set show that our 

MNet outperforms the state-of-the-art methods in both region- 

+0.5%) and contour-based (+0.8%) measurements, which validate 

he performance improvement brought by the point-based refine- 

ent module. In addition, the adaptive matching module fur- 

her enhances the overall performance by suppressing the dis- 

ractions from ambiguous regions. On the test-dev set, our PM- 

et can achieve competitive results with good computational ef- 

ciency. It is observed that HMMN [12] performs slightly better 

han ours (0.1%). This is mainly because many test-dev videos con- 

ist of objects with small areas and detailed structures, potentially 

ncreasing the demands for multi-scale feature analysis. Since our 

MNet only extracts and utilises fine-grained features for uncer- 
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Fig. 6. Qualitative comparison between our method and other multi-scale matching-based methods (CFBI+ [14] and HMMN [12] ) and our baseline model STCN [13] . Blue 

boxes highlight the main difference between methods. Numbers deonte the indices of video frames. 
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ain regions only, its performance improvement on this set is lim- 

ted. Better results can be computed ( J & F: 78.8, J : 75.0, F: 82.8)

hen considering more uncertain regions (e.g., improve K from 

0% to 40%). However, such improvement is achieved at the cost 

f more computation (FPS drops from 14.1 to 12.2). Therefore, we 

eep K as 20% to better balance the SVOS accuracy and efficiency. 

The qualitative results on DAVIS-2017 are shown in Fig. 6 . It 

s observed that our PMNet can handle not only the ambigu- 

us regions but also the challenging details with complex context. 

o some extent, these results owe to our point-based refinement 

odule, which is mainly learned from hard samples and therefore 

ore robust against uncertain (challenging) regions. 

YouTube-VOS Like DAVIS, this dataset [38] also consists of high- 

esolution videos. However, the number of videos, frames and 

nnotations in YouTube-VOS is much larger than DAVIS. There- 

ore, YouTube-VOS can activate and evaluate the performance of 

VOS methods in long-term modelling and generalisation. Cur- 

ently, there are two versions of YouTube-VOS datasets: version 

018 (3471 training videos, 474 validation videos) and 2019 (3471 

raining videos, 507 validation videos), where YouTube-VOS-2019 
9

s extended from YouTube-VOS-2018 by adding more challenging 

ideos and annotations. In this section, we compare our PMNet and 

tate-of-the-art methods on both versions. 

To evaluate the generalisation performance, YouTube-VOS di- 

ides its validation set into two groups based on object categories: 

seen” and “unseen”. The object belonging to “seen” categories res- 

dents in both training and validation sets, and the ones belonging 

o “seen” categories only residents in the validation set. Therefore, 

he metrics in Tables 2 and 3 are still grouped into two subsets: 

 seen , F seen , J unseen , and F unseen . From two tables, more significant

mprovement in F seen can be observed than J seen , which further 

emonstrates the consistency of the point-based refinement mod- 

le across different datasets. However, the improvement in F unseen 

s limited; this suggests that the generalisation of our point-based 

efinement module can be improved further. 

Fig. 7 shows the qualitative comparisons on YouTube-VOS. As 

entioned in the DAVIS part, the proposed point-based refinement 

odule and adaptive matching module enable our PMNet to han- 

le the videos with different challenges, e.g., detailed structures, 

omplex context, and ambiguous appearance. 
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Fig. 7. Qualitative comparison between our method and other multi-scale matching-based methods (CFBI+ [14] and HMMN [12] ) and our baseline model STCN [13] . Blue 

boxes highlight the main difference between methods. Numbers deonte the indices of video frames. Note that YouTube-VOS does not provide ground truth masks for the 

validation set. Therefore, we list raw video frames only. 

Table 2 

Quantitative comparison of different methods on YouTube-VOS-2018 val- 

idation set. 

Methods Years G J seen F seen J unseen F unseen 

STM [5] 2019 79.4 79.7 84.2 72.8 80.9 

KMN [7] 2020 81.4 81.4 85.6 75.3 83.3 

AFB-URR [8] 2020 79.6 78.8 83.1 74.1 82.6 

LWL [39] 2020 80.2 78.3 82.3 75.6 84.4 

CFBI + [14] 2021 82.0 81.2 86.0 76.2 84.6 

LCM [10] 2021 82.0 82.2 86.7 75.7 83.4 

RMNet [11] 2021 81.5 82.1 85.7 75.7 82.4 

SwiftNet [9] 2021 77.8 77.8 81.8 72.3 79.5 

HMMN [12] 2021 82.6 82.1 87.0 76.8 84.6 

STCN [13] 2021 83.0 81.9 86.5 77.9 85.7 

PMNet 2022 83.6 82.5 87.6 78.4 85.9 

4

o

Table 3 

Quantitative comparison of different methods on YouTube-VOS-2019 val- 

idation set. Methods marked “∗” indicate their scores come from the 

non-original works. 

Methods Years G J seen F seen J unseen F unseen 

STM [5] ∗ 2019 79.4 79.8 83.8 73.0 80.5 

KMN [7] ∗ 2020 80.0 80.4 84.5 73.8 81.4 

CFBI + [14] 2021 82.9 80.6 85.2 78.9 86.8 

HMMN [12] 2021 82.5 81.7 86.1 77.3 85.0 

STCN [13] 2021 82.7 81.1 85.4 78.2 85.9 

PMNet 2022 83.2 81.9 85.7 78.7 86.6 
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.3. Ablation studies 

This section demonstrates the effect of each module in PMNet 

n segmentation accuracy and efficiency. We choose STCN [13] as 
10 
he baseline. The ablation studies are performed on the DAVIS-2017 

alidation and test-dev sets [37] . 

At first, we verify the effectiveness of the point-based refine- 

ent module and compare different methods for uncertain region 

etection. As shown in Table 4 , the module improves both region- 

ased and contour-based performance with acceptable overhead. 

ompared with the validation set, the module achieves more sig- 
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Table 4 

The effectiveness of the point-based refinement and adaptive matching modules, eval- 

uated on both DAVIS-2017 validation and test-dev sets. “Point”, “Probs”, “Learn”, and 

“Adapt” indicate the point-based refinement, probability-based uncertain point sam- 

pling, learnable uncertain point sampling, and the adaptive matching module, respec- 

tively. 

DAVIS sets Point Probs Learn Adapt J & F J F FPS 

validation ✗ ✗ ✗ ✗ 85.4 82.2 88.6 20.2 √ 

✗ ✗ ✗ 83.7 81.5 85.9 9.6 √ √ 

✗ ✗ 85.6 82.2 89.0 15.4 √ 

✗ 
√ 

✗ 85.7 82.3 89.2 15.2 

✗ ✗ ✗ 
√ 

85.8 82.6 89.1 14.7 √ 

✗ ✗ 
√ 

84.6 81.7 87.5 8.8 √ √ 

✗ 
√ 

85.9 82.5 89.3 14.5 √ 

✗ 
√ √ 

86.0 82.7 89.4 14.1 

test- 

dev 

✗ ✗ ✗ ✗ 76.1 72.7 79.6 20.2 √ 

✗ ✗ ✗ 74.3 72.0 76.6 9.6 √ √ 

✗ ✗ 77.1 72.9 81.3 15.4 √ 

✗ 
√ 

✗ 77.2 73.1 81.4 15.2 

✗ ✗ ✗ 
√ 

78.1 74.4 81.8 14.7 √ 

✗ ✗ 
√ 

76.0 73.4 78.6 8.8 √ √ 

✗ 
√ 

78.3 74.2 82.3 14.5 √ 

✗ 
√ √ 

78.5 74.3 82.6 14.1 

Table 5 

The effect of the point-based refinement module parameters on the segmentation per- 

formance, evaluated on the DAVIS-2017 validation (v) and test-dev (t) sets. 

Values 

Stride ( s global ) Window size ( w local ) Sampling ratio ( K) 

1 2 3 13 15 17 10% 20% 40% 

J & F (v) 85.3 86.0 85.7 85.8 86.0 85.9 85.8 86.0 86.0 

J & F (t) 77.9 78.5 78.2 78.2 78.5 78.3 78.1 78.5 78.8 

FPS 12.8 14.1 14.7 14.0 14.1 14.3 14.9 14.1 12.2 

Table 6 

The effect of the adaptive matching module parameters on the segmentation performance, eval- 

uated on the DAVIS-2017 validation (v) and test-dev (t) sets. 

Values 

Window size ( w ) Scaling factor ( β) 

7 8 9 10 11 6 7 8 9 10 

J & F (v) 85.8 85.9 86.0 85.9 85.7 85.8 85.9 86.0 86.0 85.9 

J & F (t) 78.1 78.4 78.5 78.3 78.3 77.9 78.2 78.5 78.3 78.2 

FPS 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 
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Table 7 

The impact of different training strategies on the seg- 

mentation performance, evaluated on the DAVIS-2017 

validation (v) and test-dev (t) sets. “Epochs” indicates 

from which epoch the uncertainty detection mod- 

ule starts to serve the subsequent refinement proce- 

dure. The module is trained for a total of 150 epochs. 

Therefore, the last column means the uncertainty only 

comes from the predicted probabilities. 

Epochs 0 50 100 120 150 

J & F (v) 85.1 85.7 86.0 85.8 85.8 

J & F (t) 77.6 78.1 78.5 78.2 78.3 
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6

ificant improvement on the test-dev set since it consists of more 

hallenging videos. On both sets, the improvement in F is higher 

han J . This is because the point-based refinement module focuses 

n fine-grained-level feature analysis, which is beneficial for the 

bjects with detailed structures. Although generating uncertainty 

aps directly from probabilities is more efficient, this method fo- 

uses more on object contours, limiting the performance improve- 

ent in uncertain regions away from contours. By contrast, the un- 

ertainty detection module in our method is lightweight and only 

dds the overhead marginally. No matter whether using the adap- 

ive matching module, the learnable module can bring better per- 

ormance. Therefore, we keep using the learnable module to detect 

ncertain regions. In addition, we also evaluate the SVOS perfor- 

ance without uncertain region detection, i.e., all feature points on 

he finest scale are considered during matching. It is observed that 

oth the accuracy and efficiency drop significantly, which shows 

hat in most cases, the coarsest scale can bring good results. By 

ontrast, the compulsive multi-scale fusion probably encourages 

egmentation models to focus more on the fine-grained features, 

hich have fewer semantic clues and are prone to be misled by 

imilar appearances. 

Next, we verify the effectiveness of the adaptive matching mod- 

le, which is designed to suppress the distractions from ambigu- 

us regions. This module mainly improves the region-based accu- 

acy J , as shown in Table 4 . Compared with the validation set, the
11 
odule achieves more significant improvement on the test-dev set 

ince more distracting scenes are involved in the test-dev videos, 

hich form the main factor causing ambiguous regions. With the 

oint-based refinement module, the overall performance is en- 

anced further while maintaining good segmentation efficiency. 

Finally, we probe the choice of hyper-parameters in PMNet. 

pecifically, we analyse the hyper-parameters from the point-based 

efinement and adaptive matching modules in Tables 5 and 6 , re- 

pectively. We also analyse the incorporation between the uncer- 

ainty detection module and the segmentation model in Table 7 , 

nd the choice of similairty function in Table 8 . For Tables 5 and

 , the results illustrate that most assignments can generate bet- 
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Table 8 

The impact of different distance measurements 

on the segmentation performance, evaluated on 

the DAVIS-2017 validation (v) and test-dev (t) 

sets. 

Distances L2 Dot product Cosine 

J & F (v) 86.0 84.5 84.3 

J & F (t) 78.5 77.6 77.3 
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er results than the baseline method (85.4 on the validation set, 

6.0 on the test-dev set), further validating the effectiveness of the 

roposed modules in PMNet. Table 7 probes the best time to in- 

orporate the uncertainty detection module into the segmentation 

odel. The results show that performing incorporation in the mid- 

le or later stages can better leverage the uncertainty detection 

odule. In Table 8 , it is observed that L2 distance can bring better

erformance to both the SVOS method based on coarse matching 

13] and the one based on multi-scale matching (ours), further val- 

dating its effectiveness in the memory-based SVOS. 

. Conclusion 

In this paper, we have proposed PMNet for fine-grained SVOS. 

ompared with other methods based on multi-scale feature match- 

ng, our point-based refinement achieves a better balance between 

VOS accuracy and efficiency. In addition, the adaptive match- 

ng further improves the overall performance by fusing multiple 

atching schemes. Experimental results on DAVIS and YouTube- 

OS show that our method outperforms the state-of-the-art meth- 

ds. In the future, we can extend this work to achieve further per- 

ormance improvement, such as more elaborate strategy for uncer- 

ainty detection. 
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